The effect of hydrogen sulfide (HS), methanethiol (MeSH) and dimethyl sulfide (DMS) on the odor properties of three wine models-WM- (young white, young red and oaked red wines) was studied. Wine models were built by mixing a pool of common wine volatile and non-volatile compounds and further spiked with eight different combinations of the three sulfur compounds present at two levels (level 0: 0μgL and level 1: 40μgL of HS, 12μgL of MeSH; 55μgL of DMS). For each wine matrix eight WMs were produced and further submitted to sensory description by Rate-All-That-Apply (RATA) method. Hydrogen sulfide and methanethiol were clearly involved in the formation of reductive aromas and shared the ability to act as strong suppressors of fruity and floral attributes. Specifically, hydrogen sulfide generated aromas of rotten eggs, while methanethiol generated significant increases in camembert and decreases in citrus, smoky/roasted and oxidation aromas. The simultaneous presence of hydrogen sulfide and methanethiol enhanced the intensity of the unspecific term reduction, while the specific nuances individually imparted by each of the two compounds could not be further identified. DMS did not exert any outstanding effect on the reductive character of wines and its sensory effect was matrix-dependent. It was involved in the formation of fruity notes such as cooked/candied and red/black fruits in young wines, and vegetal notes (canned vegetables) in oaked red WMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2016.07.004 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).
View Article and Find Full Text PDFMitochondrion
January 2025
The Department of Blood Circulation of Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine. Address: 4, Bogomoletz Str., Kyiv 01024, Ukraine.
Pyridoxal-5-phosphate (PLP) enhances the synthesis of endogenous hydrogen sulfide, a potent regulator of cell metabolism. We used 24-month-old rats to investigate the PLP mitoprotective function in the aging heart. We demonstrated improvement of mitochondrial bioenergetic functions, inhibition of mPTP opening after PLP administration.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States.
Self-organization under out-of-equilibrium conditions is ubiquitous in natural systems for the generation of hierarchical solid-state patterns of complex structures with intricate properties. Efforts in applying this strategy to synthetic materials that mimic biological function have resulted in remarkable demonstrations of programmable self-healing and adaptive materials. However, the extension of these efforts to multifunctional stimuli-responsive solid-state materials across defined spatial distributions remains an unrealized technological opportunity.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry, University of Hyderabad, Hyderabad500046, India.
A Ce(III) phosphinate and a Ce(IV) phosphostibonate have been assembled by the reaction of a phosphinic acid and phosphostibonate with Ce(III) salts. Single crystal X-ray diffraction (SCXRD) studies reveal the formation of a rare triangular Ce(III) oxo-cluster [Ce(PhCHPO)]Cl(CHOH)(HO)] () and a fascinating hexanuclear oxo-cluster containing Ce(IV) ions [Ce (-ClCHSb)(μ-O)(μ-O)(-BuPO)(μ-OCH)] (). The molecular architecture of showcased an interesting correlation with platonic solids, wherein the Ce(IV), Sb(V), and P(V) ions were found to be present in vertices of an octahedron, a tetrahedron, and a cube, respectively.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.
The endogenous reduction of nitrite to nitrosyl is drawing increasing attention as a protective mechanism against hypoxic injury in mammalian physiology and as an alternative source of NO, which is involved in a wide variety of biological activities. Thus, chemical mechanisms for this transformation, which are mediated by metallo proteins, are of considerable interest. The study described here examines the reactions of the biomimetic models Co(TTP)(NO) (TTP = meso-tetratolylporphyrinato dianion) and Mn(TPP)(ONO) (TPP = meso-tetraphenyl-porphyrinato dianion) in sublimated solid films with hydrogen sulfide (HS) and with ethanethiol (EtSH) at various temperatures from 77 K to room temperature using in situ infrared and optical spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!