Evaluation of the Protective Efficacy of a Fused OmpK/Omp22 Protein Vaccine Candidate against Acinetobacter baumannii Infection in Mice.

Biomed Environ Sci

The Research Institute of Immunology and Molecular Biology, North Sichuan Medical College, Nanchong 637007, Sichuan, China.

Published: February 2018

Acinetobacter baumannii (A. Baumannii) is an emerging opportunistic pathogen responsible for hospital-acquired infections, and which now constitutes a sufficiently serious threat to public health to necessitate the development of an effective vaccine. In this study, a recombinant fused protein named OmpK/Omp22 and two individual proteins OmpK and Omp22 were obtained using recombinant expression and Ni-affinity purification. Groups of BALB/c mice were immunized with these proteins and challenged with a clinically isolated strain of A. baumannii. The bacterial load in the blood, pathological changes in the lung tissue and survival rates after challenge were evaluated. Mice immunized with OmpK/Omp22 fused protein provided significantly greater protection against A. baumannii challenge than those immunized with either of the two proteins individually. The results provide novel clues for future design of vaccines against A. baumannii.

Download full-text PDF

Source
http://dx.doi.org/10.3967/bes2018.019DOI Listing

Publication Analysis

Top Keywords

acinetobacter baumannii
8
fused protein
8
mice immunized
8
immunized proteins
8
baumannii
6
evaluation protective
4
protective efficacy
4
efficacy fused
4
fused ompk/omp22
4
ompk/omp22 protein
4

Similar Publications

For any organism, survival is enhanced by the ability to sense and respond to threats in advance. For bacteria, danger sensing among kin cells has been observed, but the presence or impacts of general danger signals are poorly understood. Here we show that different bacterial species use exogenous peptidoglycan fragments, which are released by nearby kin or non-kin cell lysis, as a general danger signal.

View Article and Find Full Text PDF

Capsular Polysaccharide Restrains Type VI Secretion in .

Elife

January 2025

Laboratory of Molecular Microbiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.

The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS.

View Article and Find Full Text PDF

Endometritis is one of the main reproductive disorders in mares and due to the increasing prevalence of antibiotic resistance, the use of probiotics in the prevention and treatment of endometritis in mares has gained interest, given their potential to restore and maintain a healthy uterine microbiota. Therefore, the aim of this study was to evaluate the antimicrobial properties of total metabolites of Lactobacillus acidophilus (LA) and Lactiplantibacillus plantarum (LP) against common equine endometrial pathogenic bacteria in vitro (Acinetobacter baumannii, Escherichia coli (1), Escherichia coli (2), Escherichia coli (3), Escherichia coli (4), Enterobacter cloacae, Streptococcus equi, Staphylococcus warneri, Actinobacillus equi and Klebesiella pneumoniae), as well as to assess their low molecular weight metabolites (loM) and extracellular vesicle (EVs) inhibition capacity over a multidrug-resistant E. coli isolated from mares with clinical endometritis.

View Article and Find Full Text PDF

Biochemical properties and substrate specificity of GOB-38 in Elizabethkingia anophelis.

Sci Rep

January 2025

Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

The novel pathogen, Elizabethkingia anophelis, has gained attention due to its high mortality rates and drug resistance facilitated by its inherent metallo-β-lactamases (MBLs) genes. This study successfully identified and outlined the functions of the B3-Q MBLs variant, GOB-38, in a clinical sample of E. anophelis.

View Article and Find Full Text PDF

Unlabelled: The performance of the Liofilchem Compact Antimicrobial Susceptibility Panel (ComASP) Cefiderocol was evaluated in a multicenter study. Enterobacterales, , and clinical isolates and challenge isolates were tested by three and one sites, respectively. Minimum inhibitory concentration (MIC) testing was performed by the Clinical and Laboratory Standards Institute (CLSI) broth microdilution and ComASP, which included two reading endpoints (CLSI read; MIC is the first well in which reduction of growth is <1 mm or light haze/faint turbidity] and ComASP [ComASP read; MIC is the first well at which 100% inhibition of growth occurs]).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!