We present an in situ triple coupling of synchrotron X-ray diffraction with Raman spectroscopy, and thermography to study milling reactions in real time. This combination of methods allows a correlation of the structural evolution with temperature information. The temperature information is crucial for understanding both the thermodynamics and reaction kinetics. The reaction mechanisms of three prototypical mechanochemical syntheses, a cocrystal formation, a C-C bond formation (Knoevenagel condensation), and the formation of a manganese-phosphonate, were elucidated. Trends in the temperature development during milling are identified. The heat of reaction and latent heat of crystallization of the product contribute to the overall temperature increase. A decrease in temperature occurs via release of, for example, water as a by-product. Solid and liquid intermediates are detected. The influence of the mechanical impact could be separated from temperature effects caused by the reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201800147DOI Listing

Publication Analysis

Top Keywords

temperature
6
situ investigations
4
investigations mechanochemical
4
mechanochemical one-pot
4
one-pot syntheses
4
syntheses in situ
4
in situ triple
4
triple coupling
4
coupling synchrotron
4
synchrotron x-ray
4

Similar Publications

The aggregation of proteins, peptides and amino acids has been a keen subject of interest owing to their implications in metabolic disorders. In this work, we investigated the self-aggregation of the unmodified aromatic amino acid l-tryptophan (Trp) into unusual spherical microstructures. Using fluorescence spectroscopy and field emission scanning electron microscopy (FE-SEM), we detail the time-dependent transformation of monomeric tryptophan into spherical aggregates with distinct fluorescence characteristics (λ = 345 nm, λ = 430 nm) compared to the monomer.

View Article and Find Full Text PDF

Revisiting the in-plane and in-channel diffusion of lithium ions in a solid-state electrolyte at room temperature through neural network-assisted molecular dynamics simulations.

Phys Chem Chem Phys

January 2025

Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China.

Developing superionic conductor (SIC) materials offers a promising pathway to achieving high ionic conductivity in solid-state electrolytes (SSEs). The LiGePS (LGPS) family has received significant attention due to its remarkable ionic conductivity among various SIC materials. molecular dynamics (AIMD) simulations have been extensively used to explore the diffusion behavior of Li ions in LiGePS.

View Article and Find Full Text PDF

Three months before the planned implementation of the European Union Regulation on Deforestation-free products, the European Commission proposed to postpone the implementation by twelve months. The announcement raised the temperature in the debate on this regulation. We put forward suggestions, based on scientific knowledge as well as current EUDR research and implementation projects, on how the 12-month phasing-in period could be used wisely to promote sustainability transitions in deforestation-risk value chains.

View Article and Find Full Text PDF

Ecosystems such as wetlands have karst groundwater as their primary source of preserving their services and functions. Karst systems are complex hydrogeological systems that are difficult to study because of their complicated functioning mechanism, which requires an interdisciplinary effort based on hydrodynamic assessment and characterization of the hydrogeology of the system. The study area is the Ramsar wetland Ciénaga de Tamasopo (Mexico), which is dependent on the discharge of karst groundwater that is affected by water extraction of extensive sugarcane agriculture and is also the main water source for the rural towns.

View Article and Find Full Text PDF

Linkage Mapping and Identification of Candidate Genes for Cold Tolerance in Rice (Oryza Sativa L.) at the Bud Bursting Stage.

Rice (N Y)

January 2025

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Rice is highly sensitive to low temperatures, making cold stress a significant factor limiting its growth, especially during the bud bursting stage. To address this, an RIL population derived from a cross between cold-tolerant and cold-sensitive rice varieties was used to identify nine QTLs linked to cold tolerance under temperatures of 4 ℃, 5 °C, and 6 ℃ using a high-density genetic map. One candidate gene, LOC_Os07g44410, was identified through gene function annotation, haplotype analysis, and qRT-PCR, with two main haplotypes (Hap1 and Hap2) showing distinct phenotypic differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!