Objectives: To establish a recombinase flippase (FLP) and flippase recognition target (FRT) system-mediated protocol for post-integration excision of exogenous DNA fragments in the oleaginous yeast Rhodosporidium toruloides.

Results: Binary vectors were constructed to harbor FLP expressing cassette together with the hygromycin-resistance marker. Results showed that R. toruloides transformants produced FLP, but failed to mediate removal of the bleomycin-resistance marker within two FRT sites. When FLP was fused with a native nuclear localization signal (NLS) peptide, the system was found functional. Moreover, R. toruloides recombinant strains expressing the NLS-fused FLP under the control of PADH2, an promoter of alcohol dehydrogenase 2 gene (RHTO_03062), were obtained to realize homologous recombination upon growing in glucose-deficient medium.

Conclusions: We have devised a homologous recombination method for R. toruloides based on the FLP/FRT system, which may facilitate further metabolic engineering and designing advanced cell factories for value-added chemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-018-2542-3DOI Listing

Publication Analysis

Top Keywords

oleaginous yeast
8
yeast rhodosporidium
8
homologous recombination
8
flp
5
developing flippase-mediated
4
flippase-mediated maker
4
maker recycling
4
recycling protocol
4
protocol oleaginous
4
toruloides
4

Similar Publications

Unlabelled: Bioprospecting can uncover new yeast strains and species with interesting ecological characteristics and valuable biotechnological traits, such as the capacity to convert different carbon sources from industrial side and waste streams into bioproducts. In this study, we conducted untargeted yeast bioprospecting in tropical West Africa, collecting 1,996 isolates and determining their growth in 70 different environments. While the collection contains numerous isolates with the potential to assimilate several cost-effective and sustainable carbon and nitrogen sources, we focused on characterizing the 203 strains capable of growing on lactose, the main carbon source in the abundant side stream cheese whey from dairy industries.

View Article and Find Full Text PDF

The oleaginous yeast Lipomyces starkeyi has a high capacity for starch assimilation, but the genes involved and specific mechanisms in starch degradation remain unclear. This study aimed to identify the critical carbohydrate-active enzyme (CAZyme) genes contributing to starch degradation in L. starkeyi.

View Article and Find Full Text PDF

Oleaginous Yeast Biology Elucidated With Comparative Transcriptomics.

Biotechnol Bioeng

December 2024

Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.

Extremophilic yeasts have favorable metabolic and tolerance traits for biomanufacturing- like lipid biosynthesis, flavinogenesis, and halotolerance - yet the connection between these favorable phenotypes and strain genotype is not well understood. To this end, this study compares the phenotypes and gene expression patterns of biotechnologically relevant yeasts Yarrowia lipolytica, Debaryomyces hansenii, and Debaryomyces subglobosus grown under nitrogen starvation, iron starvation, and salt stress. To analyze the large data set across species and conditions, two approaches were used: a "network-first" approach where a generalized metabolic network serves as a scaffold for mapping genes and a "cluster-first" approach where unsupervised machine learning co-expression analysis clusters genes.

View Article and Find Full Text PDF

Pollution from fossil fuel usage coupled with its unsustainability is currently instigating a global drive for affordable and eco-friendly alternatives. A feasible replacement seems to be microbial biofuels. However, the production cost is still high, partly due to the cost of substrates and media.

View Article and Find Full Text PDF

Increased accumulation of fatty acids in engineered Saccharomyces cerevisiae by co-overexpression of interorganelle tethering protein and lipases.

N Biotechnol

November 2024

Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China. Electronic address:

Fatty acids (FAs) and their derivatives are versatile chemicals widely used in various industries. Synthetic biology, using microbial cell factories, emerges as a promising alternative technology for FA production. To enhance the production capacity of these microbial chassis, additional engineering strategies are imperative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!