Computational Modelling of Protein Complex Structure and Assembly.

Methods Mol Biol

MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.

Published: February 2019

Sequence and structure space are nowadays sufficiently large that we can use computational methods to model the structure of proteins based on sequence similarity alone. Not only useful as a standalone tool, homology modelling has also had a transformative effect on the ease with which we can solve crystal structures and electron density maps. Another technique-molecular dynamics-aims to model protein structures from first principles and, thanks to increases in computational power, is slowly becoming a viable tool for studying protein complexes. Finally, the prediction of protein assembly pathways from three-dimensional structures of complexes is also now becoming possible.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7759-8_22DOI Listing

Publication Analysis

Top Keywords

computational modelling
4
protein
4
modelling protein
4
protein complex
4
complex structure
4
structure assembly
4
assembly sequence
4
sequence structure
4
structure space
4
space nowadays
4

Similar Publications

Pharmacogenomics stands as a pivotal driver toward personalized medicine, aiming to optimize drug efficacy while minimizing adverse effects by uncovering the impact of genetic variations on inter-individual outcome variability. Despite its promise, the intricate landscape of drug metabolism introduces complexity, where the correlation between drug response and genes can be shaped by numerous nongenetic factors, often exhibiting heterogeneity across diverse subpopulations. This challenge is particularly pronounced in datasets such as the International Warfarin Pharmacogenetic Consortium (IWPC), which encompasses diverse patient information from multiple nations.

View Article and Find Full Text PDF

Discovery of a heparan sulfate binding domain in monkeypox virus H3 as an anti-poxviral drug target combining AI and MD simulations.

Elife

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding.

View Article and Find Full Text PDF

We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.

View Article and Find Full Text PDF

The evolution of the Amber additive protein force field: History, current status, and future.

J Chem Phys

January 2025

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

Molecular dynamics simulations are pivotal in elucidating the intricate properties of biological molecules. Nonetheless, the reliability of their outcomes hinges on the precision of the molecular force field utilized. In this perspective, we present a comprehensive review of the developmental trajectory of the Amber additive protein force field, delving into researchers' persistent quest for higher precision force fields and the prevailing challenges.

View Article and Find Full Text PDF

As the clinical applicability of peripheral nerve stimulation (PNS) expands, the need for PNS-specific safety criteria becomes pressing. This study addresses this need, utilizing a novel machine learning and computational bio-electromagnetics modeling platform to establish a safety criterion that captures the effects of fields and currents induced on axons. Our approach is comprised of three steps: experimentation, model creation, and predictive simulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!