New insights into the formation mechanism of gold nanoparticles using dopamine as a reducing agent.

J Colloid Interface Sci

College of Chemistry & Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China. Electronic address:

Published: August 2018

Dopamine (DA), a simplified mimic of mussel proteins, can be employed as a reductant in the preparation of Au nanoparticles (AuNPs) due to its inherent catechol building block. The widely accepted mechanism of AuNP formation using DA as the reductant assumes that the reduction of Au(III) ions involves the two-electron oxidation of DA, where the corresponding phenol and phenolates serve as the reductive species to yield quinone. We herein report a novel insight into the mechanism of formation of AuNPs using DA as the reductant. We demonstrate that the synthesis of AuNPs requires the prior oxidation of the DA to form quinone units, which then catalyze the formation of semiquinones. These semiquinone radicals (SMQs) reduce the Au(III) ions to form the initial AuNPs, and further growth is then catalyzed by the first AuNPs, with nucleation occurring where the SMQs, phenols, and phenolates can serve as reductive species. In addition, DA oxidizes and polymerizes to form a polydopamine capping layer on the AuNPs. We therefore expect that the novel mechanism proposed herein may promote us to furthermore explore the production of noble metal NPs using other polyphenols.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2018.03.077DOI Listing

Publication Analysis

Top Keywords

auiii ions
8
phenolates serve
8
serve reductive
8
reductive species
8
aunps
6
insights formation
4
mechanism
4
formation mechanism
4
mechanism gold
4
gold nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!