A low-cost solution for quantification of movement during DBS surgery.

J Neurosci Methods

Department of Neuroscience, Brown University, Providence, RI, 02903, United States; Brown Institute for Brain Science (BIBS), Brown University, Providence, RI, 02903, United States; Department of Neurosurgery, The Warren Alpert Medical School, Providence, RI, 02903, United States; Department of Neuosurgry, Rhode Island Hospital, Providence, RI, 02903, United States; Norman Prince Neurosciences Institute, Lifespan, Providence, RI, 02903, United States. Electronic address:

Published: June 2018

Background: During the deep brain stimulation (DBS) electrode implantation operation with microelectrode recordings (MER) in awake patients, somatotopic testing and test stimulation are performed to improve electrode placement and provide the most beneficial symptom reduction possible, while minimizing side effects. As this procedure is commonly used to alleviate abnormal movements associated with Parkinson's disease (PD) and Essential Tremor (ET), intraoperative assessment of a patient's movements is critical to optimizing surgical benefit. However, despite its importance, movement assessment is typically subjective and qualitative.

New Method: Here, we present a detailed description of a low-cost, open-source system as a solution.

Results: The described system measures movements intraoperatively and in synchrony with neurophysiological recordings for both online visualization and offline analysis.

Comparison With Existing Method(s): Few movement quantification systems are designed to interface with intraoperative neurophysiological recordings; the widespread application of such systems may be limited by their cost and proprietary, closed-source nature. The system presented provides a low-cost, open-source alternative.

Conclusions: The system outlined in this work may improve the DBS procedure by adding valuable objectivity in movement quantification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2018.03.013DOI Listing

Publication Analysis

Top Keywords

low-cost open-source
8
neurophysiological recordings
8
movement quantification
8
low-cost solution
4
solution quantification
4
movement
4
quantification movement
4
movement dbs
4
dbs surgery
4
surgery background
4

Similar Publications

Seatizen Atlas: a collaborative dataset of underwater and aerial marine imagery.

Sci Data

January 2025

IFREMER Délégation Océan Indien (DOI), Le Port, 97420, La Réunion, Rue Jean Bertho, France.

Citizen Science initiatives have a worldwide impact on environmental research by providing data at a global scale and high resolution. Mapping marine biodiversity remains a key challenge to which citizen initiatives can contribute. Here we describe a dataset made of both underwater and aerial imagery collected in shallow tropical coastal areas by using various low cost platforms operated either by citizens or researchers.

View Article and Find Full Text PDF

Background: The University of Kentucky Markey Cancer Center developed the data gathering and visualization platform Cancer InFocus (CIF) as a solution for cancer center catchment area surveillance. CIF was released in June 2022 and made available for use to other institutions through a no-cost licensing agreement. The purpose of this study was to evaluate the impact CIF has had on cancer centers since its release.

View Article and Find Full Text PDF

Do-it-yourself instrument integration into an existing mammalian cell line development automation platform.

SLAS Technol

January 2025

Cell Line Development, WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China.

Laboratory automation in the biopharmaceutical industry as a rule requires contracted service from highly professional automation solution provider, at times involving the purchase and development of specialized or customized hardware and software, which can be proprietary and expensive. Alternatively, with the availability of open-source software customized for automation, it is possible to automate existing laboratory instruments in a do-it-yourself (DIY), low-cost, and flexible fashion. In this work, we used an open-source scripting language, AutoIt, to integrate an existing microplate imager into an existing automation platform that is already equipped with a 4-axis robotic arm and an automated incubator, to achieve automation of the imaging procedure in our cell line development workflow.

View Article and Find Full Text PDF

A hyperspectral open-source imager (HOSI).

BMC Biol

January 2025

Centre for Ecology & Conservation, University of Exeter, Penryn, UK.

Background: The spatial and spectral properties of the light environment underpin many aspects of animal behaviour, ecology and evolution, and quantifying this information is crucial in fields ranging from optical physics, agriculture/plant sciences, human psychophysics, food science, architecture and materials sciences. The escalating threat of artificial light at night (ALAN) presents unique challenges for measuring the visual impact of light pollution, requiring measurement at low light levels across the human-visible and ultraviolet ranges, across all viewing angles, and often with high within-scene contrast.

Results: Here, I present a hyperspectral open-source imager (HOSI), an innovative and low-cost solution for collecting full-field hyperspectral data.

View Article and Find Full Text PDF

Weather and soil water dictate farm operations such as irrigation scheduling. Low-cost and open-source agricultural monitoring stations are an emerging alternative to commercially available monitoring stations because they are often built from components using open-source, do-it-yourself (DIY) platforms and technologies. For irrigation management in an experimental vineyard located in Quiroga (Lugo, Spain), we faced the challenge of installing a low-cost environmental and soil parameter monitoring station composed of several nodes measuring air temperature and relative humidity, soil temperature, soil matric potential, and soil water content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!