Histone Acetyltransferases in Cancer: Guardians or Hazards?

Crit Rev Oncog

University of Cyprus, Department of Biological Sciences, Nicosia, Cyprus.

Published: April 2019

AI Article Synopsis

  • HATs are enzymes that play a crucial role in regulating gene expression and chromatin structure through acetylation, which is an important process for epigenetic control.
  • Deregulation of HATs is linked to cancer development, making them potential targets for new cancer therapies.
  • Recent findings indicate that HATs can act as both oncogenes and tumor suppressors, suggesting that cancer therapies targeting these enzymes need to consider their dual roles in different types of cancer.

Article Abstract

Histone acetyltransferases (HATs) catalyzing N-epsilon-lysine or N-alpha-terminal acetylation on histone and non-histone substrates are important epigenetic regulators controlling gene expression and chromatin structure. Deregulation of these enzymes by genetic or epigenetic alterations accompanied by defects in gene transcription have been implicated in oncogenesis. Therefore, these enzymes are considered promising therapeutic targets, offering new horizons for epigenetic cancer therapy. However, recent observations suggest that these enzymes function as both oncogenes and tumor suppressors. In this review, we present the current evidence demonstrating that individual HATs can either prevent cancer cell proliferation or drive malignant transformation depending on the molecular context and cancer type. We therefore advocate that future therapeutic interventions targeted toward these enzymes should carefully consider the fact that HATs commonly have a two-sided role in carcinogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1615/CritRevOncog.2017024506DOI Listing

Publication Analysis

Top Keywords

histone acetyltransferases
8
cancer
4
acetyltransferases cancer
4
cancer guardians
4
guardians hazards?
4
hazards? histone
4
acetyltransferases hats
4
hats catalyzing
4
catalyzing n-epsilon-lysine
4
n-epsilon-lysine n-alpha-terminal
4

Similar Publications

Regulation of Histone Acetylation Modification on Biosynthesis of Secondary Metabolites in Fungi.

Int J Mol Sci

December 2024

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

The histone acetylation modification is a conservative post-translational epigenetic regulation in fungi. It includes acetylation and deacetylation at the lysine residues of histone, which are catalyzed by histone acetyltransferase (HAT) and deacetylase (HDAC), respectively. The histone acetylation modification plays crucial roles in fungal growth and development, environmental stress response, secondary metabolite (SM) biosynthesis, and pathogenicity.

View Article and Find Full Text PDF

Anti-CRISPR proteins in Gluconobacter oxydans inactivate FnCas12a by acetylation.

Int J Biol Macromol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China. Electronic address:

Gluconobacter oxydans is an important chassis cell for one-step production of vitamin C. Previous studies reported that CRISPR/Cas12a is naturally inactivated in G. oxydans, but the specific mechanism remains unclear.

View Article and Find Full Text PDF

Introduction: Histone modifications are crucial epigenetic mechanisms for regulating gene expression. Histone acetyltransferases and deacetylases (HDACs) catalyze histone acetylation, a process that mediates transcription. Over recent decades, studies have demonstrated that targeting histone acetylation can be effective in cancer treatment, leading to the development and approval of several HDAC inhibitors.

View Article and Find Full Text PDF

Background: CREB binding protein (CREBBP) is a key epigenetic regulator, altered in a fifth of relapsed cases of acute lymphoblastic leukemia (ALL). Selectively targeting epigenetic signaling may be an effective novel therapeutic approach to overcome drug resistance. Anti-tumor effects have previously been demonstrated for GSK-J4, a selective H3K27 histone demethylase inhibitor, in several animal models of cancers.

View Article and Find Full Text PDF

An antagonistic role of clock genes and lima1 in kidney regeneration.

Commun Biol

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China.

The circadian clock genes are known important for kidney development, maturation and physiological functions. However, whether and how they play a role in renal regeneration remain elusive. Here, by using the single cell RNA-sequencing (scRNA-seq) technology, we investigated the dynamic gene expression profiles and cell states after acute kidney injury (AKI) by gentamicin treatment in zebrafish.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!