Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Single molecule Förster resonance energy transfer (smFRET) is a popular tool to study biological systems that undergo topological transitions on the nanometer scale. smFRET experiments typically require recording of long smFRET trajectories and subsequent statistical analysis to extract parameters such as the states' lifetimes. Alternatively, analysis of probability distributions exploits the shapes of smFRET distributions at well chosen exposure times and hence works without the acquisition of time traces. Here, we describe a variant that utilizes statistical tests to compare experimental datasets with Monte Carlo simulations. For a given model, parameters are varied to cover the full realistic parameter space. As output, the method yields p-values which quantify the likelihood for each parameter setting to be consistent with the experimental data. The method provides suitable results even if the actual lifetimes differ by an order of magnitude. We also demonstrated the robustness of the method to inaccurately determine input parameters. As proof of concept, the new method was applied to the determination of transition rate constants for Holliday junctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5006038 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!