Single-molecule experiments with optical tweezers have become an important tool to study the properties and mechanisms of biological systems, such as cells and nucleic acids. In particular, force unzipping experiments have been used to extract the thermodynamics and kinetics of folding and unfolding reactions. In hopping experiments, a molecule executes transitions between the unfolded and folded states at a preset value of the force [constant force mode (CFM) under force feedback] or trap position [passive mode (PM) without feedback] and the force-dependent kinetic rates extracted from the lifetime of each state (CFM) and the rupture force distributions (PM) using the Bell-Evans model. However, hopping experiments in the CFM are known to overestimate molecular distances and folding free energies for fast transitions compared to the response time of the feedback. In contrast, kinetic rate measurements from pulling experiments have been mostly done in the PM while the CFM is seldom implemented in pulling protocols. Here, we carry out hopping and pulling experiments in a short DNA hairpin in the PM and CFM at three different temperatures (6 °C, 25 °C, and 45 °C) exhibiting largely varying kinetic rates. As expected, we find that equilibrium hopping experiments in the CFM and PM perform well at 6 °C (where kinetics are slow), whereas the CFM overestimates molecular parameters at 45 °C (where kinetics are fast). In contrast, nonequilibrium pulling experiments perform well in both modes at all temperatures. This demonstrates that the same kind of feedback algorithm in the CFM leads to more reliable determination of the folding reaction parameters in irreversible pulling experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5010303 | DOI Listing |
Sci Rep
December 2024
School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
Microtextured microneedles are tiny needle-like structures with micron-scale microtextures, and the drugs stored in the microtextures can be released after entering the skin to achieve the effect of precise drug delivery. In this study, the skin substitution model of Ogden's hyperelastic model and the microneedle array and microtexture models with different geometrical parameters were selected to simulate and analyse the flow of the microtexture microneedle arrays penetrating the skin by the finite-element method, and the length of the microneedles was determined to be 200 μm, the width 160 μm, and the value of the gaps was determined to be 420 μm. A four-pronged cone was chosen as the shape of microneedles, and a rectangle was chosen as the shape of the drug-carrying microneedle.
View Article and Find Full Text PDFFront Psychol
December 2024
Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States.
Boredom and curiosity are common everyday states that drive individuals to seek information. Due to their functional relatedness, it is not trivial to distinguish whether an action, for instance in the context of a behavioral experiment, is driven by boredom or curiosity. Are the two constructs opposite poles of the same cognitive mechanism, or distinct states? How do they interact? Can they co-exist and complement each other? Here, we systematically review similarities and dissimilarities of boredom and curiosity with respect to their subjective experience, functional role, and neurocognitive implementation.
View Article and Find Full Text PDFFEBS J
December 2024
Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary.
Transglutaminase 2 (TG2) is a uniquely versatile protein with diverse catalytic activities, such as transglutaminase, protein disulfide isomerase, GTPase and protein kinase, and participates in several biological processes. According to information available in the RBP2GO database, TG2 can act as an RNA-binding protein (RBP). RBPs participate in posttranscriptional gene expression regulation, therefore influencing the function of RNA, whereas RNA molecules can also modulate the biological activity of RBPs.
View Article and Find Full Text PDFNPJ Sci Food
December 2024
Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
Meat cuts, when cooked and masticated, separate into fibrous structures because of the long-range mechanical anisotropy (LMA) exhibited by muscle fascicles, which is not fully recapitulated in alternative proteins produced using molecular alignment technology like high moisture extrusion. We have developed a scalable perforated micro-imprinting technology to greatly enhance LMA in high moisture meat analogue (HMMA). By imprinting 1 mm thick HMMA sheets with perforated patterns (optimized by AI), we observed up to 5 × more anisotropic separation of fibrous structures in a one-dimensional pulling LMA analysis, to match the fibrousness of the cooked chicken breast, duck breast, pork loin and beef loin.
View Article and Find Full Text PDFOTJR (Thorofare N J)
December 2024
University of Toronto, Toronto, Ontario, Canada.
Background: Errorless learning is an intervention technique used in acquired brain injury (ABI) rehabilitation. To support the use of this intervention within occupational therapy practice, it is important to know how errorless learning has been applied to (re)train daily functions.
Objectives: To describe the empirical literature on errorless learning applied to everyday functioning in adults with ABI.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!