The impact of the environment onto the geometry of hydrogen bonds can be critically important for the properties of the questioned molecular system. The paper reports on the design of calculation approaches capable to simulate the effect of aprotic polar solvents on the geometric and NMR parameters of intermolecular hydrogen bonds. A hydrogen fluoride and pyridine complex has been used as the main model system because the experimental estimates of these parameters are available for it. Specifically, F-H, F⋯N, and H-N distances, the values of N NMR shift, and spin-spin coupling constants J(FH), J(HN), and J(FN) have been analyzed. Calculation approaches based on the gas-phase and the Polarizable Continuum Model (PCM) approximations and their combinations with geometric constraints and additional noncovalent interactions have been probed. The main result of this work is that the effect of an aprotic polar solvent on the geometry of a proton-donor⋯H⋯proton-acceptor complex cannot be reproduced under the PCM approximation if no correction for solvent-solute interactions is made. These interactions can be implicitly accounted for using a simple computational protocol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5011163 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!