Adiabatic decay of internal solitons due to Earth's rotation within the framework of the Gardner-Ostrovsky equation.

Chaos

Faculty of Health, Engineering and Sciences, University of Southern Queensland, West St., Toowoomba, Queensland 4350, Australia.

Published: March 2018

The adiabatic decay of different types of internal wave solitons caused by the Earth's rotation is studied within the framework of the Gardner-Ostrovsky equation. The governing equation describing such processes includes quadratic and cubic nonlinear terms, as well as the Boussinesq and Coriolis dispersions: (u + c u + α u u + α u u + β u) = γ u. It is shown that at the early stage of evolution solitons gradually decay under the influence of weak Earth's rotation described by the parameter γ. The characteristic decay time is derived for different types of solitons for positive and negative coefficients of cubic nonlinearity α (both signs of that parameter may occur in the oceans). The coefficient of quadratic nonlinearity α determines only a polarity of solitary wave when α < 0 or the asymmetry of solitary waves of opposite polarity when α > 0. It is found that the adiabatic theory describes well the decay of solitons having bell-shaped profiles. In contrast to that, large amplitude table-top solitons, which can exist when α is negative, are structurally unstable. Under the influence of Earth's rotation, they transfer first to the bell-shaped solitons, which decay then adiabatically. Estimates of the characteristic decay time of internal solitons are presented for the real oceanographic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5021864DOI Listing

Publication Analysis

Top Keywords

earth's rotation
16
adiabatic decay
8
solitons
8
internal solitons
8
framework gardner-ostrovsky
8
gardner-ostrovsky equation
8
characteristic decay
8
decay time
8
decay
6
decay internal
4

Similar Publications

A Photocontrolled Molecular Rotor Based on Azobenzene-Strapped Mixed (Phthalocyaninato)(Porphyrinato) Rare Earth Triple-Decker.

Molecules

January 2025

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Effectively regulating the rotary motions of molecular rotors through external stimuli poses a tremendous challenge. Herein, a new type of molecular rotor based on azobenzene-strapped mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complex is reported. Electronic absorption and H NMR spectra manifested the reversible isomerization of the rotor between the configuration and the configuration.

View Article and Find Full Text PDF

To provide insight into the interface structure in Ti particle-reinforced Mg matrix composites, this study investigates the inherent Mg/Ti interface structure formed during the solidification of supercooled Mg melt on a (0001)Ti substrate using ab initio molecular dynamics (AIMD) simulations and density function theory (DFT) calculation. The resulting interface exhibits an orientation relationship of 0001Mg//0001Ti with a lattice mismatch of approximately 8%. Detailed characterizations reveal the occurrences of 0001Mg plane rotation and vacancy formation to overcome the lattice mismatch at the inherent Mg/Ti interface while allowing Mg atoms to occupy the energetically favorable hollow sites above the Ti atomic layer.

View Article and Find Full Text PDF

Pressure-driven phase transformations on MgCa(CO) huntite carbonate.

Phys Chem Chem Phys

January 2025

CELLS-ALBA Synchrotron Light Facility, Cerdanyola del Vallés, 08290, Barcelona, Spain.

Magnesium and calcium carbonate minerals are significant reservoirs of Earth's carbon and understanding their behavior under different conditions is crucial for elucidating the mechanisms of deep carbon storage. Huntite, MgCa(CO), is one of the two stable calcium magnesium carbonate phases, together with dolomite. The distinctive cation coordination environment of Ca atoms compared to calcite-type and dolomite structures makes huntite a comparatively less dense phase.

View Article and Find Full Text PDF

Cavity as radio telescope for galactic dark photon.

Sci Bull (Beijing)

January 2025

School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China; Center for High Energy Physics, Peking University, Beijing 100871, China; Key Laboratory of Particle Acceleration Physics and Technology, Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Dark photons, as a minimal extension of the Standard Model through an additional Abelian gauge group, may propagate relativistically across the galaxy, originating from dark matter decay or annihilation, thereby contributing to a galactic dark photon background. The generation of dark photons typically favors certain polarization modes, which are dependent on the interactions between dark matter and dark photons. We introduce a framework in which a resonant cavity is utilized to detect and differentiate these polarizations, leveraging the daily variation in expected signals due to the anisotropic distribution of dark photons and the rotation of the Earth.

View Article and Find Full Text PDF

Electrically Modulated Multilevel Optical Chirality in GdFeCo Thin Films.

ACS Appl Electron Mater

January 2025

Department of Applied Physics, National Pingtung University, No. 4-18, Minsheng Road, 90044 Pingtung, Taiwan.

This study introduces a simple approach to dynamically control multilevel optical ellipticity in ferrimagnetic GdFeCo alloys by switching the spin orientation through Joule heating induced by electrical current, with the assistance of a low magnetic field of 3.5 mT. It is demonstrated that selecting specific compositions of Gd (FeCo) alloys, with magnetic compensation temperatures near or above room temperature, allows for significant manipulation of the circular dichroism (CD) effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!