Thirteen new sphingosine-1-phosphate receptor 1 (S1PR1) ligands were designed and synthesized by replacing azetidine-3-carboxylic acid moiety of compound 4 with new polar groups. The in vitro binding potency of these new analogs toward S1PR1 was determined. Out of 13 new compounds, four compounds 9a, 10c, 12b, and 16b displayed high S1PR1 binding potency with IC values of 13.2 ± 3.2, 14.7 ± 1.7, 9.7 ± 1.6, and 6.3 ± 1.3 nM, respectively; further binding studies of these four ligands toward S1PR2-5 suggested they are highly selective for S1PR1 over other S1PRs. The radiosynthesis of the lead radiotracer [F]12b was achieved with good radiochemical yield (∼14.1%), high radiochemical purity (>98%), and good specific activity (∼54.1 GBq/μmol, decay corrected to the end of synthesis, EOS). Ex vivo autoradiography and initial biodistribution studies in rodents were performed, suggesting that [F]12b was able to penetrate the blood-brain barrier (BBB) with high brain uptake (0.71% ID/g at 60 min post-injection) and no defluorination was observed. In vitro autoradiography study in brain slices of lipopolysaccharides (LPS)-induced neuroinflammation mice indicated that SEW2871, a specific S1PR1 ligand was able to reduce the uptake of [F]12b, suggesting [F]12b has S1PR1 specific binding. These initial results suggested that [F]12b has potential to be an F-18 labeled radiotracer for imaging S1PR1 in the brain of the animal in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908474PMC
http://dx.doi.org/10.1016/j.ejmech.2018.03.035DOI Listing

Publication Analysis

Top Keywords

s1pr1
8
binding potency
8
suggesting [f]12b
8
[f]12b
5
syntheses in vitro
4
in vitro evaluation
4
evaluation s1pr1
4
s1pr1 compounds
4
compounds initial
4
initial evaluation
4

Similar Publications

Cardiomyocyte S1PR1 promotes cardiac regeneration via AKT/mTORC1 signaling pathway.

Theranostics

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.

Lower vertebrates and some neonatal mammals are known to possess the ability to regenerate cardiomyocyte and fully recover after heart injuries within a limited period. Understanding the molecular mechanisms of heart regeneration and exploring new ways to enhance cardiac regeneration hold significant promise for therapeutic intervention of heart failure. Sphingosine 1-phospahte receptor 1 (S1PR1) is highly expressed in cardiomyocytes and plays a crucial role in heart development and pathological cardiac remodeling.

View Article and Find Full Text PDF

Glomerular endothelial cells (GECs) are pivotal in developing glomerular sclerosis disorders. The advancement of focal segmental glomerulosclerosis (FSGS) is intimately tied to disruptions in lipid metabolism. Sphingosine-1-phosphate (S1P), a molecule transported by high-density lipoproteins (HDL), exhibits protective effects on vascular endothelial cells by upregulating phosphorylated endothelial nitric oxide synthase (p-eNOS) and enhancing nitric oxide (NO) production.

View Article and Find Full Text PDF

Purpose: The sphingosine-1-phosphate receptor-1 (S1PR) is involved in regulating responses to neuroimmune stimuli. There is a need for S1PR-specific radioligands with clinically suitable brain pharmcokinetic properties to complement existing radiotracers. This work evaluated a promising S1PR radiotracer, [F]TZ4877, in nonhuman primates.

View Article and Find Full Text PDF

Background: The aim of our study was to determine the role of sphingolipids, which control proliferation and apoptosis, in the placenta of pregnant women with pregnancy-associated breast cancer (PABC) after chemotherapy compared with healthy patients.

Methods: We analyzed (by the PCR method) the gene expression of key sphingolipid metabolism enzymes (sphingomyelinases (SMPD1 and SMPD3), acid ceramidase (ASAH1), ceramide synthases (CERS 1-6), sphingosine kinase1 (SPHK1), sphingosine-1-phosphate lyase 1 (SGPL1), and sphingosine-1-phosphate receptors (S1PR1, S1PR2, and S1PR3)) and the content of subspecies of ceramides, sphingosine, and sphingosine-1-phosphate in seven patients with PABC after chemotherapy and eight healthy pregnant women as a control group.

Results: We found a significant increase in the expression of genes of acid ceramidase (ASAH1), sphingosine-1-phosphate lyase 1 (SGPL1), sphingosine kinase (SPHK1), and ceramide synthases (CERS 1-3, 5, 6) in the samples of patients with PABC during their treatment with cytostatic chemotherapy.

View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic ductal adenocarcinomas (PDAC) are highly aggressive and lack effective treatments; this study examines potential new therapies using rat monoclonal antibodies (mAbs) targeting specific membrane proteins.
  • Key membrane proteins such as HER1-4, MET, S1PR1, LAT1, and CD44v are frequently expressed in PDAC, and targeting them with mAbs demonstrated growth inhibition in various cancer cell lines.
  • High levels of CD44v in PDAC correlate with poor patient prognosis, indicating that targeting CD44v and related proteins could provide new diagnostic and therapeutic avenues for treating this aggressive cancer.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!