Thymidine phosphorylase (TP) is a rate-limiting enzyme in thymidine catabolism. TP has several important roles in biological and pharmacological mechanisms; importantly TP acts as an angiogenic factor and one of metabolic enzymes of fluoro-pyrimidine anticancer agents and modifies inflammation. Improving our understanding of the characteristics and functions of TP has led to the development of novel TP-based anticancer therapies. We recently reported that TP-dependent thymidine catabolism contributes to tumour survival in low nutrient conditions and the pathway from thymidine to the glycolysis cascade is affected in the context of physiological and metabolic conditions. In this review, we describe recent advancement in our understanding of TP, with a focus on cancer cell biology and the pharmacology of pyrimidine analogue anticancer agents. This review provides comprehensive understanding of the molecular mechanism of TP function in cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2018.03.019DOI Listing

Publication Analysis

Top Keywords

thymidine phosphorylase
8
thymidine catabolism
8
anticancer agents
8
thymidine
5
phosphorylase cancer
4
cancer aggressiveness
4
aggressiveness chemoresistance
4
chemoresistance thymidine
4
phosphorylase rate-limiting
4
rate-limiting enzyme
4

Similar Publications

Ciprofloxacin, a widely used second-generation fluoroquinolone for treating bacterial infections, has recently shown notable anticancer properties. This review explores progress in developing ciprofloxacin derivatives with anticancer properties, emphasizing key structural changes that improve their therapeutic effectiveness by modifying the basic group at position 7, the carboxylic acid group at position 3, or both. It further investigates the mechanisms by which these derivatives fight cancer, such as inducing apoptosis, arresting the cell cycle, inhibiting topoisomerase I and II, preventing tubulin polymerization, suppressing interleukin 6, blocking thymidine phosphorylase, inhibiting multidrug resistance proteins, and hindering angiogenesis.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.

View Article and Find Full Text PDF

Eradication of Cancer Cells Using Doxifluridine and Mesenchymal Stem Cells Expressing Thymidine Phosphorylase.

Bioengineering (Basel)

November 2024

Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, USA.

Gene-directed enzyme prodrug therapy (GDEPT) has been developed over several decades as a targeted cancer treatment aimed at minimizing toxicity to healthy cells. This approach involves three key components: a non-toxic prodrug, a gene encoding an enzyme that converts the prodrug into an active chemotherapy drug, and a gene carrier to target cancer cells. In this study, the prodrug doxifluridine was enzymatically converted into the chemotherapy drug 5-fluorouracil via thymidine phosphorylase, using human mesenchymal stem cells (hMSCs) as delivery vehicles.

View Article and Find Full Text PDF

Although the phase III SUNLIGHT trial has demonstrated the survival benefit of the addition of bevacizumab (Bmab) to trifluridine/thymidine phosphorylase inhibitor (FTD/TPI), neutropenia, which frequently occurs during FDT/TPI + Bmab therapy, is a concern for clinicians. As TPI is excreted by the kidneys, the risk of adverse events is likely to be high in patients with an impaired renal function. This study aimed to investigate the relationship between renal impairment and the incidence of chemotherapy-induced neutropenia during FTD/TPI + Bmab therapy using real-world data.

View Article and Find Full Text PDF

Thymidine phosphorylase (TYMP) promotes platelet activation and thrombosis while suppressing vascular smooth muscle cell (VSMC) proliferation. Both processes are central to the development and progression of abdominal aortic aneurysms (AAAs). We hypothesize that TYMP plays a role in AAA development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!