Interaction of dynamin I with NAP-22, a neuronal protein enriched in the presynaptic region.

Neurosci Lett

Department of Biology, Graduate School of Science, Kobe-University, Kobe, 657-8501, Japan. Electronic address:

Published: May 2018

Neurons have well-developed membrane microdomains called "rafts" that are recovered as a detergent-resistant low-density membrane microdomain fraction (DRM). NAP-22 is one of the major protein components of neuronal DRM and localizes in the presynaptic region. In order to know the role of NAP-22 in the synaptic transmission, NAP-22 binding proteins in the cytosol were searched with an affinity screening with NAP-22 as a bait and several protein bands were detected. Using mass-analysis and western blotting, one of the main band of ∼90 kDa was identified as dynamin I. The GTPase activity of dynamin I was partly inhibited by NAP-22 expressed in bacteria and this inhibition was recovered by the addition of calmodulin, a NAP-22 binding protein. The GTPase activity of dynamin was known to be activated with acidic membrane lipids such as phosphatidylserine and the addition of NAP-22, a phosphatidylserine binding protein, inhibited the activation of the GTPase by this lipid. Since NAP-22 localizes on the presynaptic plasma membrane and on synaptic vesicles, these results suggest the participation of NAP-22 in the membrane cycling through binding to dynamin and acidic membrane lipids at the presynaptic region.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2018.03.061DOI Listing

Publication Analysis

Top Keywords

presynaptic region
12
nap-22
10
localizes presynaptic
8
nap-22 binding
8
gtpase activity
8
activity dynamin
8
binding protein
8
acidic membrane
8
membrane lipids
8
membrane
6

Similar Publications

Long-range inputome of prefrontal GABAergic interneurons in the Alzheimer's disease mouse.

Alzheimers Dement

January 2025

Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China.

Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by damage to cortical circuits. However, the mechanisms underlying AD-associated changes in long-range circuits remain poorly understood.

Methods: In this study, we used viral tracing and fluorescence micro-optical sectioning tomography (fMOST) imaging to investigate whole-brain changes in the input circuit of the frontal cortex of 5×FAD mice.

View Article and Find Full Text PDF

The bed nucleus of the stria terminalis (BNST) is involved in feeding, reward, aversion, and anxiety-like behavior. We identify BNST neurons defined by the expression of vesicular glutamate transporter 3, VGluT3. VGluT3 neurons were localized to anteromedial BNST, were molecularly distinct from accumbal VGluT3 neurons, and co-express vesicular GABA transporter (VGaT).

View Article and Find Full Text PDF

To elucidate the potential roles of presynaptic and postsynaptic serotonergic activity in impulsivity traits, we investigated the relationship between self-reported impulsiveness and serotonin transporter (5-HTT) and 5-HT2A receptors in healthy individuals. In this study, 26 participants completed 3-Tesla magnetic resonance imaging and positron emission tomography with [C]DASB and [C]MDL100907. To quantify 5-HTT and 5-HT2A receptor availability, the binding potential (BP) of [C]DASB and [C]MDL100907 was derived using the simplified reference tissue model with cerebellar gray matter as the reference region.

View Article and Find Full Text PDF

Aging disrupts multiple homeostatic processes, including autophagy, a cellular process for the recycling and degradation of defective cytoplasmic structures. Acute treatment with the autophagy inhibitor chloroquine blunts the maximal forces generated by the diaphragm muscle, but the mechanisms underlying neuromuscular dysfunction in old age remain poorly understood. We hypothesized that chloroquine treatment increases the presynaptic retention of the styryl dye FM 4-64 following high-frequency nerve stimulation, consistent with the accumulation of unprocessed bulk endosomes.

View Article and Find Full Text PDF

In corticostriatal nerve terminals, glutamate release is stimulated by adenosine via A receptors (ARs) and simultaneously inhibited by endocannabinoids via CB receptors (CBRs). We previously identified presynaptic AR-CBR heterotetrameric complexes in corticostriatal nerve terminals. We now explored the possible functional interaction between ARs and CBRs in purified striatal GABAergic nerve terminals (synaptosomes) and compared these findings with those on the release of glutamate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!