Insulin (In) based formulation has been used over decades for the cure of In-dependent diabetic patients, however, more attempts are still required to improve the remedial use of In. In this regard, the use of green tea has become widespread nowadays. However, it is unknown that (+)-catechin hydrate (CAT), a major component of green tea which enhances anti-diabetic activity of In, will or will not enhance the structure and stability of In if ingested with sugars. Interestingly, by using biophysical techniques, present study reveals the fact that the use of sugar during the intake of green tea extract may produce unwanted effects on In which may further lead to some disorders associated with In stability and also create obstacle in successful implications of In formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2018.03.032 | DOI Listing |
Chem Sci
January 2025
J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University College Station TX 77843 USA
This perspective work examines the current advancements in integrated CO capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate generation of CO to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Tea Science, Yunnan Agricultural University, Kunming 650500, China.
This research prepared gelatinized waxy maize starch (WMS), low-amylose maize starch (LAS), and high-amylose maize starch (HAS) with different glutathione (GSH) content (5, 10, and 15 %) using high hydrostatic pressure (HHP) at 600 MPa. Scanning electron microscopy (SEM) revealed damaged morphology of WMS and complete swelled granules of LAS and HAS with different degree of gelatinization (DG) values, 92.86, 59.
View Article and Find Full Text PDFHeliyon
January 2025
School of Forestry, Henan Agricultural University, Zhengzhou, 450046, China.
Maxim. is valued for its high oil yield, which fruit has high oil content and good health effects. However, the large amount of unsaturated fatty acids in the oil is easily oxidized, and its storage intolerance has seriously restricted its marketing.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
Nano-selenium fertilizers can promote plant growth and nitrogen availability. However, little information is available on the effects of nano-selenium on tea leaf quality, soil nutrient availability and associated microbe-driven mechanisms. This study examined the effects of nano-selenium on the tea leaf quality and soil nitrogen cycling in 20-year-old tea plantations when the leaves were sprayed with ammonium or nitrate.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
An integrated understanding of dissolved phosphorous (DP) export mechanism and controls on export over dry and wet periods is crucial for riverine ecological restorations in dammed river basins considering its high bioavailability and retention rates at dams. Riverine DP transport patterns (composition, sources, and transport pathways), export controls, and fate were investigated over the 2020 wet season (5 events) and dry seasons before and after it (2 events: dry and dry) in a semi-arid, small-dammed watershed to comprehend the links between terrestrial DP sources and aquatic DP sinks. Close spatiotemporal monitoring of the full range of phosphorous and total suspended solids (TSSs) and subsequent analyses (hysteresis, hierarchical partitioning, and coefficient of variation) provided the basis for the study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!