Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigated the influence of motion on color constancy using a chromatic stimulus presented in various conditions (static, motion, and rotation). Attention to the stimulus and background was also controlled in different gaze modes, constant fixation of the stimulus, and random viewing of the stimulus. Color constancy was examined in six young observers using a haploscopic view of a computer monitor. The target and background were illuminated in simulation by red, green, blue, and yellow, shifted from daylight (D65) by specific color differences along L - M or S - (L + M) axes on the equiluminance plane. The standard pattern (under D65) and test pattern (under the color illuminant) of a 5-deg square were presented side by side, consisting of 1.2-deg square targets with one of 12 colors at each center, surrounded by 230 background ellipses consisting of eight other colors. The central color targets in both patterns flipped between top and bottom locations at the rate of 3 deg/s in the motion condition. The results indicated an average reduction of color constancy over the 12 test colors by motion. The random viewing parameter indicated better color constancy by more attention to the background, although the difference was not significant. Color constancy of the four color illuminations was better to worse in green, red, yellow, and blue, respectively. The reduction of color constancy by motion could be explained by less contribution of the illumination estimation effect on color constancy. In the motion with constant fixation condition, the retina strongly adapted to the mean chromaticity of the background. However, motion resulted in less attention to the color of the background, causing a weaker effect of the illumination estimation. Conversely, in the static state with a random viewing condition, more attention to the background colors caused a stronger illumination estimation effect, and color constancy was improved overall.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.35.00B309 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!