Introduction: Ceramics are widely applied in dentistry owing to their excellent mechanical and physical attributes. The most popular ceramics are Lava™, KaVo Everest, and Cercon. However, it is unclear whether or not a different surface treatment along with low-temperature aging and mechanical loading (ML) affects the physical properties of computer-aided design (CAD)/computer-aided manufacturing (CAM)-machined yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic.
Aim: The objective of this research was to assess the impact of various surface treatments as air-particle abrasion, ML, low-temperature degradation (LTD), and their cumulative effects on biaxial flexural properties of Y-TZP.
Materials And Methods: Totally, 50 specimens were fabricated by CAD-CAM machining from Cercon® and divided into five groups following different surface treatments as control (C), air-particle abrasion (Si), ML, LTD, and cumulative treatment (CT) group. Results were investigated by two-way analysis of variance (ANOVA) and Tukey honest significant difference (HSD) test.
Results: The highest biaxial flexural strength was observed in the Si group (950.2 ± 126.7 MPa), followed by the LTD group (861.3 ± 166.8 MPa), CT group (851.2 ± 126.5 MPa), and the least with ML (820 ± 110 MPa). A significant difference was observed in the two-way ANOVA test. X-ray diffraction (XRD) analysis showed that the control group consists of 100% tetragonal zirconia and the maximum amount of monoclinic phase was obtained after LTD.
Conclusion: No negative effect on biaxial flexural strength was observed; indeed, it increases the biaxial strength. Hence, these surface treatments can be done in routine clinical practice to improve the performance of ceramic restoration.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!