Interspecific competition is assumed to play an important role in the ecological differentiation of species and speciation. However, empirical evidence for competition's role in speciation remains surprisingly scarce. Here, we studied the role of interspecific competition in the ecological differentiation and speciation of two closely related songbird species, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (Luscinia luscinia). Both species are insectivorous and ecologically very similar. They hybridize in a secondary contact zone, which is a mosaic of sites where both species co-occur (syntopy) and sites where only one species is present (allotopy). We analysed fine-scale habitat data for both species in both syntopic and allotopic sites and looked for associations between habitat use and bill morphology, which have been previously shown to be more divergent in sympatry than in allopatry. We found that the two nightingale species differ in habitat use in allotopic sites, where L. megarhynchos occurred in drier habitats and at slightly higher elevations, but not in syntopic sites. Birds from allotopic sites also showed higher interspecific divergence in relative bill size compared to birds from syntopic sites. Finally, we found an association between bill morphology and elevation. Our results are consistent with the view that interspecific competition in nightingales has resulted in partial habitat segregation in sympatry and that the habitat-specific food supply has in turn very likely led to bill size divergence. Such ecological divergence may enhance prezygotic as well as extrinsic postzygotic isolation and thus accelerate the completion of the speciation process.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jeb.13275DOI Listing

Publication Analysis

Top Keywords

interspecific competition
16
allotopic sites
12
secondary contact
8
contact zone
8
ecological differentiation
8
sites species
8
bill morphology
8
syntopic sites
8
bill size
8
species
7

Similar Publications

Off-seasonal water level regulations disrupt the biological traits and phenological rhythms of native fish species, yet their impacts on interspecific trophic interactions remain understudied. This study employed stable isotope analysis to assess the trophic dynamics of three fish species (, , and ) across different water periods in Hongze Lake. The findings revealed that all three species occupied similar mid-level trophic positions, with no significant difference among water periods ( > 0.

View Article and Find Full Text PDF

In the context of global warming and intensified human activities, the loss and fragmentation of species habitats have been exacerbated. In order to clarify the trends in the current and future suitable wintering areas for hooded cranes (), the MaxEnt model was applied to predict the distribution patterns and trends of hooded cranes based on 94 occurrence records and 23 environmental variables during the wintering periods from 2015 to 2024. The results indicated the following.

View Article and Find Full Text PDF

Differential biotransformation ability may alter fish biodiversity in polluted waters.

Environ Int

January 2025

Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag 8600, Dübendorf, Switzerland; Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland. Electronic address:

Divergence in the activity of biotransformation pathways could lead to species sensitivity differences to chemical stress. To explore this hypothesis, we evaluated the biotransformation capacity of five fish species representative of Swiss biodiversity assemblages across watercourses surrounded by different land use. We report interspecific differences regarding the presence and activity of major biotransformation pathways, such as the invasive pumpinkseed (Lepomis gibbosus) displaying micropollutant clearance between 3- and 7-fold higher than native species (e.

View Article and Find Full Text PDF

Similar host instar preferences by three sympatric parasitoids of (Coleoptera: Coccinellidae): potential host niche overlapping.

Bull Entomol Res

January 2025

Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan.

Parasitoids employ diverse oviposition strategies to enhance offspring survival and maximise fitness gains from hosts. Ladybird parasitoids, significant natural enemies of ladybirds, have the potential to disrupt biocontrol efforts, yet their biology and ecology remain poorly understood. This study investigated the host-parasitoid interaction among three sympatric larval endoparasitoids of (Coleoptera: Coccinellidae): (Hymenoptera: Encyrtidae), (Hymenoptera: Proctotrupidae) and (Hymenoptera: Eulophidae).

View Article and Find Full Text PDF

Foraging abilities and competitive interactions between two egg parasitoids of bagrada bug in California.

Bull Entomol Res

January 2025

Invasive Species and Pollinator Health Research Unit, USDA-ARS, Albany, CA, USA.

Bagrada bug, (Burmeister) (Hemiptera: Pentatomidae), is an invasive pest of cole crops in the United States. Because it also feeds on widespread weeds and persists in natural habitats surrounding crop fields, conventional control strategies are often ineffective at providing long-term control. One egg parasitoid, Talamas (Hymenoptera: Scelionidae), is a promising biological control candidate because of its ability to parasitise buried eggs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!