The purpose of this report is to offer a consensus opinion of ACVIM oncology diplomates and technicians on the safe use of cytotoxic chemotherapeutics in veterinary practice. The focus is on minimizing harm to the personnel exposed to the drugs: veterinary practitioners, veterinary technicians, veterinary staff, and pet owners. The safety of the patient receiving these drugs is also of paramount importance, but is not addressed in this statement. Much of the information presented is based on national recommendations by Occupational Safety and Health Administration, National Institute for Occupational Safety and Health, United States Pharmacopeia, and other published regulations. These directives reflect an abundance of caution to minimize exposure to medical personnel, but large-scale studies about the consequences of long-term occupational exposure are not available in veterinary medicine. Challenges in the delivery of optimal treatment safely and economically to veterinary patients in general practice without access to a veterinary oncologist or other specialist, because of costs or proximity, remain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980460PMC
http://dx.doi.org/10.1111/jvim.15077DOI Listing

Publication Analysis

Top Keywords

safe cytotoxic
8
cytotoxic chemotherapeutics
8
veterinary
8
chemotherapeutics veterinary
8
veterinary practice
8
occupational safety
8
safety health
8
acvim small
4
small animal
4
animal consensus
4

Similar Publications

Background: In the past decade, immunotherapy has become a major choice for the treatment of lung cancer, yet its therapeutic efficacy is still relatively limited due to the various immune escape mechanisms of tumors. Based on this, we introduce Neo-BCV, a novel bacterial composite vaccine designed to enhance immune responses against lung cancer.

Methods: We investigated the immune enhancing effect of Neo-BCV through in vivo and in vitro experiments, including flow cytometry, RNA-seq, and Western blot.

View Article and Find Full Text PDF

Skin cancer is the world's fifth most diagnosed malignancy and is increasingly occurring in young adults. The elevated morbidity and mortality of skin cancer are known to be highly correlated with its frequent recurrence after tumor excision. Although regimens such as chemotherapy and/or immunotherapy are often administered following surgical treatments, the patients may suffer from severe side effects, drug resistance, and/or high cost during treatments, indicating that the development of an effective and safe modality for skin cancer after surgery is still highly demanded nowadays.

View Article and Find Full Text PDF

Purpose: Human papillomavirus (HPV) infection is the major cause of (pre)malignant cervical lesions. We previously demonstrated that Vvax001, a replication-incompetent Semliki Forest virus (SFV) vaccine encoding HPV type 16 (HPV16) E6 and E7, induced potent anti-E6 and -E7 cytotoxic T-cell responses. Here, we investigated the clinical efficacy of Vvax001 in patients with HPV16-positive cervical intraepithelial neoplasia grade 3 (CIN3).

View Article and Find Full Text PDF

In silico design of multi-epitope vaccine candidate based on structural proteins of porcine reproductive and respiratory syndrome virus.

Vet Immunol Immunopathol

January 2025

Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Bicutan, Taguig 1634, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; S&T Fellows Program, Department of Science and Technology, Bicutan, Taguig 1634, Philippines. Electronic address:

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most common respiratory disease-causing viral agents. Swine infected with PRRSV exhibit severe respiratory symptoms and reproductive failure, leading to significant economic losses. To address this issue, inactivated and live-attenuated vaccines have been developed.

View Article and Find Full Text PDF

MITOCDNB DECREASES PLATELET ACTIVATION THROUGH ITS SELECTIVE ACTION ON MITOCHONDRIAL THIOREDOXIN REDUCTASE.

Biomed Pharmacother

January 2025

Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile. Electronic address:

Platelet inhibition is a fundamental objective to prevent and treat thrombus formation. Platelet activation depends on mitochondrial function. This study aims to identify a new mitochondria-targeting compound with antiplatelet activity at safe concentrations in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!