Purpose: Printed magnetic ink creates predictable B field perturbations based on printed shape and magnetic susceptibility. This can be exploited for contrast in MR imaging techniques that are sensitized to off-resonance. The purpose of this work was to characterize the susceptibility variations of magnetic ink and demonstrate its application for creating MR-visible skin markings.
Methods: The magnetic susceptibility of the ink was estimated by comparing acquired and simulated B field maps of a custom-built phantom. The phantom was also imaged using a 3D gradient echo sequence with a presaturation pulse tuned to different frequencies, which adjusts the range of suppressed frequencies. Healthy volunteers with a magnetic ink pattern pressed to the skin or magnetic ink temporary flexible adhesives applied to the skin were similarly imaged.
Results: The volume-average magnetic susceptibility of the ink was estimated to be 131 ± 3 parts per million across a 1-mm isotropic voxel (13,100 parts per million assuming a 10-μm thickness of printed ink). Adjusting the saturation frequency highlights different off-resonant regions created by the ink patterns; for example, if tuned to suppress fat, fat suppression will fail near the ink due to the off-resonance. This causes magnetic ink skin markings placed over a region with underlying subcutaneous fat to be visible on MR images.
Conclusion: Patterns printed with magnetic ink can be imaged and identified with MRI. Temporary flexible skin adhesives printed with magnetic ink have the potential to be used as skin markings that are visible both by eye and on MR images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107406 | PMC |
http://dx.doi.org/10.1002/mrm.27187 | DOI Listing |
ACS Appl Bio Mater
January 2025
Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.
Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
Additive manufacturing (AM) of magnetic materials has recently attracted increasing interest for various applications but is often limited by the high cost and supply chain risks of rare-earth-element (REE) magnetic precursors. Recent advances in nanomanufacturing have enabled the development of rare-earth-free (REF) magnetic materials, such as spinel ferrites, hexaferrites, MnAl, MnBi, Alnico, FePt, and iron oxides/nitrides, which offer promising alternatives for printing high-performance magnetic devices. This review provides a detailed overview of the latest developments in REF magnetic materials, covering both synthesis strategies of REF magnetic materials/nanomaterials and their integration into AM processes.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
December 2024
Department of Anesthesiology, West China Second University Hospital, Sichuan University, 20#, Section 3 Renmin Nan Road, Chengdu, Sichuan, 610041, PR China.
Background: While the line joining the posterior superior iliac spine (PSIS) intersects a relatively stable sacral vertebra, it does not directly facilitate the localization of lumbar interspace or assist in the positioning for neuraxial anesthesia. Our study aimed to explore the potential of the PSIS line as a reference point and to determine its practical applicability in clinical settings.
Methods: We consecutively enrolled pregnant women with gestational ages ranging from 24 to 38 weeks scheduled for magnetic resonance imaging (MRI) examination.
Adv Sci (Weinh)
December 2024
Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
This paper addresses the trade-off between sensitivity and sensing range in strain sensors, while introducing additional functionalities through an innovative 4D printing approach. The resulting ultraflexible sensor integrates carbon nanotubes/liquid metal hybrids and iron powders within an Ecoflex matrix. The optimization of this composition enables the creation of an uncured resin ideal for Direct Ink Writing (DIW) and a cured sensor with exceptional electromechanical, thermal, and magnetic performance.
View Article and Find Full Text PDFPhys Med Biol
November 2024
Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
To develop a nonlinear, model-based parameter estimation method directly from incomplete measurements in - space for robust spectral analysis in highly accelerated chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI).. A CEST-specific, separable nonlinear model, which describes spectral decomposition using multi-pool Lorentzian functions (conventional magnetization transfer (MT), direct saturation of water signals (DS), amide, amine, and nuclear Overhauser effect) derived from the steady-state Bloch McConnel equation, is incorporated into a measurement model in CEST MRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!