Chocolate Pots hot springs (CP) is a circumneutral-pH Fe-rich geothermal feature located in Yellowstone National Park. Previous Fe(III)-reducing enrichment culture studies with CP sediments identified close relatives of known dissimilatory Fe(III)-reducing bacterial (FeRB) taxa, including and However, the abundances and activities of such organisms in the native microbial community are unknown. Here, we used stable isotope probing experiments combined with 16S rRNA gene amplicon and shotgun metagenomic sequencing to gain an understanding of the Fe(III)-reducing microbial community at CP. Fe-Si oxide precipitates collected near the hot spring vent were incubated with unlabeled and C-labeled acetate to target active FeRB. We searched reconstructed genomes for homologs of genes involved in known extracellular electron transfer (EET) systems to identify the taxa involved in Fe redox transformations. Known FeRB taxa containing putative EET systems (, ) increased in abundance under acetate-amended conditions, whereas genomes related to and that contained putative EET systems were recovered from incubations without electron donor. Our results suggest that FeRB play an active role in Fe redox cycling within Fe-Si oxide-rich deposits located at the hot spring vent. The identification of past near-surface hydrothermal environments on Mars emphasizes the importance of using modern Earth environments, such as CP, to gain insight into potential Fe-based microbial life on other rocky worlds, as well as ancient Fe-rich Earth ecosystems. By combining stable carbon isotope probing techniques and DNA sequencing technology, we gained insight into the pathways of microbial Fe redox cycling at CP. The results suggest that microbial Fe(III) oxide reduction is prominent , with important implications for the generation of geochemical and stable Fe isotopic signatures of microbial Fe redox metabolism within Fe-rich circumneutral-pH thermal spring environments on Earth and Mars.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5960972PMC
http://dx.doi.org/10.1128/AEM.02894-17DOI Listing

Publication Analysis

Top Keywords

isotope probing
12
hot spring
12
eet systems
12
stable isotope
8
chocolate pots
8
pots hot
8
yellowstone national
8
national park
8
ferb taxa
8
microbial community
8

Similar Publications

Introduction: Measurement of repeatability and reproducibility (R&R) is necessary to realize the full potential of positron emission tomography (PET). Several studies have evaluated the reproducibility of PET using 18F-FDG, the most common PET tracer used in oncology, but similar studies using other PET tracers are scarce. Even fewer assess agreement and R&R with statistical methods designed explicitly for the task.

View Article and Find Full Text PDF

Isolation of Inner-Sphere Aquo Complexes of Samarium(II).

J Am Chem Soc

January 2025

Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States.

The and isomers of [Sm(dicyclohexano-18-crown-6)(HO)]I exhibiting water molecules bound to the Sm ion have been isolated and characterized. Sm possesses an electrochemical potential sufficient for water reduction, and thus these complexes add to the recent body of evidence that the oxidation of Sm by water can operate by a mechanism that is not straightforward. These complexes are obtained by the direct addition of stoichiometric amounts of water to solutions of the respective Sm(dicyclohexano-18-crown-6)I isomers under an inert atmosphere.

View Article and Find Full Text PDF

Protein-based stable isotope probing (protein-SIP) can link microbial taxa to substrate assimilation. Traditionally, protein-SIP requires a sample-specific metagenome-derived database for samples with unknown composition. Here, we describe GroEL-prototyping-based stable isotope probing (GroEL-SIP), that uses GroEL as a taxonomic marker protein to identify bacterial taxa (GroEL-proteotyping) coupled to SIP directly linking identified taxa to substrate consumption.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful tool for analyzing nucleic acids due to its exceptional sensitivity and specificity. This study rigorously investigates not only the impact of polyA strands of different lengths (, 5, 10, 15, and 20 adenine bases) but also their distinct grafting strategy (SH at 5' and NH at 5' end) on the SERS signal of DNA strand using synthesized gold nanoparticles (AuNPs) on graphene oxide sheets (GO-AuNPs). By comparing the thiol vs amine bonding onto the GO-AuNP nanoplatform, we found a strong correlation between the adenine peak intensity at 732 cm and the strand length for both grafting methods (SH at 5' end or NH at 5' end).

View Article and Find Full Text PDF

Given that non-equilibrium molecular motion in thermal gradients is influenced by both solute and solvent, the application of spectroscopic methods that probe each component in a binary mixture can provide insights into the molecular mechanisms of thermal diffusion for a large class of systems. In the present work, we use an all-optical setup whereby near-infrared excitation of the solvent leads to a steady-state thermal gradient in solution, followed by characterization of the non-equilibrium system with electronic spectroscopy, imaging, and intensity. Using rhodamine B in water as a case study, we perform measurements as a function of solute concentration, temperature, wavelength, time, near-infrared laser power, visible excitation wavelength, and isotope effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!