Orthopaedic devices using unidirectional carbon fibre reinforced poly-ether-ether-ketone (PEEK) laminates potentially offer several benefits over metallic implants including: anisotropic material properties; radiolucency and strength to weight ratio. However, despite FDA clearance of PEEK-OPTIMA™ Ultra-Reinforced, no investigation of the mechanical properties or failure mechanisms of a medical grade unidirectional laminate material has been published to date, thus hindering the development of first-generation laminated orthopaedic devices. This study presents the first investigation of the mechanical behaviour and failure mechanisms of PEEK-OPTIMA™ Ultra-Reinforced. The following multi-axial suite of experimental tests are presented: 0° and 90° tension and compression, in-plane shear, mode I and mode II fracture toughness, compression of ±45° laminates and flexure of 0°, 90° and ±45° laminates. Three damage mechanisms are uncovered: (1) inter-laminar delamination, (2) intra-laminar cracking and (3) anisotropic plasticity. A computational damage and failure model that incorporates all three damage mechanisms is developed. The model accurately predicts the complex multi-mode failure mechanisms observed experimentally. The ability of a model to predict diverse damage mechanisms under multiple loading directions conditions is critical for the safe design of fibre reinforced laminated orthopaedic devices subjected to complex physiological loading conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2018.03.015 | DOI Listing |
Sci Bull (Beijing)
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:
The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.
View Article and Find Full Text PDFArthroscopy
January 2025
Fellowship Director Emeritus, Plano Orthopedic and Sports Medicine Center, Plano Texas.
A free-floating disc shaped polycarbonate-urethane ultra-high molecular weight polyethylene fiber reinforced medial compartment implant is designed for symptomatic postmedial meniscectomy syndrome. Because it is not sutured into place, an intact 2mm meniscus rim with intact anterior and posterior meniscal horns are required. In a recent 24-month follow-up study, only 64% of the original implants were retained.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28 a, 10000 Zagreb, Croatia.
This research follows the principles of circular economy through the zero waste concept and cascade approach performed in two steps. Our paper focuses on the first step and explores the characteristics of developed biocomposite materials made from a biodegradable poly(lactic acid) polymer (PLA) reinforced with natural fibers isolated from the second generation of biomass (agricultural biomass and weeds). Two plants, L.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.
Rigid reinforced concrete (RC) frames are generally adopted as stiff elements to make the building structures resistant to seismic forces. However, a method has yet to be fully sought to provide earthquake resistance through optimizing beam and column performance in a rigid frame. Due to its high corrosion resistance, the integration of CFRP offers an opportunity to reduce frequent repairs and increase durability.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia.
In this work, the fracture mechanism of winding carbon-fiber-reinforced plastics (CFRPs) based on epoxy matrices reinforced by polysulfone film was investigated. Two types of polymer matrices were used: epoxy oligomer (EO) cured by iso-methyltetrahydrophthalic anhydride (iso-MTHPA), and EO-modified polysulfone (PSU) with active diluent furfuryl glycidyl ether (FGE) cured by iso-MTHPA. At the winding stage, the reinforcing film was placed in the middle layer of the CFRP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!