Cancer stem cell (CSC) theory reveals a new insight into the understanding of tumorigenesis and metastasis. Recently, DNA methylation is suggested to be a potential epigenetic mechanism for maintenance of CSCs. What's more, studies have shown that DNA methyltransferase (DNMT) is essential for CSCs and deletion of DNMT can reduce tumorigenesis by limiting CSC pool. Therefore, targeting the epigenetic modifiers especially DNA methylation offers an optional strategy for treating human cancers. In the present study we found that DNMT inhibitor 5-Aza-2'-deoxycytidine (5-AzaDC) markedly reduced colorectal CSC abundance in vitro and suppressed liver metastatic tumor growth in vivo. And 5-AzaDC inhibited the expression of active β-catenin and down-regulated the Wnt signaling pathway. The Wnt inhibitors were frequently inactivated by promoter methylation in colorectal cancer; however analysis of TCGA data base showed that only the expression of SFRP1 was significantly reduced in tumors compared to normal tissues. In addition, restoring of SFRP1 expression inhibited the stem cell-like potential of colorectal cancer cells. Our results indicated that inhibition of DNMT blocked the self-renewal of colorectal CSCs and SFRP1 was essential for the maintenance of colorectal CSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2018.03.014DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
12
inhibition dnmt
8
cancer cells
8
wnt signaling
8
signaling pathway
8
dna methylation
8
colorectal cscs
8
colorectal
6
dnmt suppresses
4
suppresses stemness
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!