Quantum information theorems state that it is possible to exploit collective quantum resources to greatly enhance the charging power of quantum batteries (QBs) made of many identical elementary units. We here present and solve a model of a QB that can be engineered in solid-state architectures. It consists of N two-level systems coupled to a single photonic mode in a cavity. We contrast this collective model ("Dicke QB"), whereby entanglement is genuinely created by the common photonic mode, to the one in which each two-level system is coupled to its own separate cavity mode ("Rabi QB"). By employing exact diagonalization, we demonstrate the emergence of a quantum advantage in the charging power of Dicke QBs, which scales like sqrt[N] for N≫1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.120.117702 | DOI Listing |
RSC Adv
January 2025
Plasmonic Nanomaterials Laboratory, Department of Nanoscience and Technology, PSG Institute of Advanced Studies Peelamedu Coimbatore-641 004 Tamilnadu India
Escalating energy demands have often ignited ground-breaking innovations in the current era of electrochemical energy storage systems. Supercapacitors (SCs) have emerged as frontrunners in this regard owing to their exclusive features such ultra-high cyclic stability, power density, and ability to be derived from sustainable sources. Despite their promising attributes, they typically fail in terms of energy density, which poses a significant hindrance to their widespread commercialization.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Electrical Engineering, Sarhad University of Information Technology Peshawar 25000 Pakistan.
The growing demand for efficient, stable, and environmentally friendly photovoltaic technologies has motivated the exploration of nontoxic perovskite materials such as KGeCl. However, the performance of KGeCl-based perovskite solar cells (PSCs) depends heavily on the compatibility of charge transport layers (CTLs) and optimization of device parameters. In this study, six PSC configurations were simulated using SCAPS-1D software, incorporating CTLs such as Alq, CSTO, VO, PB, and SbS.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2025
U.S. Food and Drug Administration, Office of Science and Engineering Labs, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, Maryland, United States.
Purpose: We evaluate the impact of charge summing correction on a cadmium telluride (CdTe)-based photon-counting detector in breast computed tomography (CT).
Approach: We employ a custom-built laboratory benchtop system using the X-THOR FX30 0.75-mm CdTe detector (Varex Imaging, Salt Lake City, Utah, United States) with a pixel pitch of 0.
Adv Mater
January 2025
Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China.
Co-free high-Ni layered cathode materials LiNiMeO (Me = Mn, Mg, Al, etc.) are a key part of the next-generation high-energy lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the hindered Li kinetics and the high reactivity of Ni result in poor rate performance and unsatisfied cycling stability.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Pharmacy and Health Management, Hebei Chemical & Pharmaceutical College, Shijiazhuang, China.
Self-powered devices for human motion monitoring and energy harvesting have garnered widespread attention in recent research. In this work, we designed a honeycomb-structured triboelectric nanogenerator (H-TENG) using polyester cloth and Teflon tape, with aluminum foil as the conductive electrode. This design leverages the large surface area and flexibility of textiles, resulting in significant performance improvements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!