A novel optical label-free bio-sensing platform based on a new class of resonances supported in a photonic crystal metasurface is reported herein. Molecular binding is detected as a shift in the resonant wavelength of the bound states in the continuum of radiation modes. The new configuration is applied to the recognition of the interaction between protein p53 and its protein regulatory partner murine double minute 2 (MDM2). A detection limit of 66 nM for the protein p53 is found. The device provides an excellent interrogation stability and loss-free operation, requires minimal optical interrogation equipment and can be easily optimized to work in a wide wavelength range.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5951372PMC
http://dx.doi.org/10.3390/ma11040526DOI Listing

Publication Analysis

Top Keywords

bound states
8
states continuum
8
protein p53
8
optical biosensors
4
biosensors based
4
based photonic
4
photonic crystals
4
crystals supporting
4
supporting bound
4
continuum novel
4

Similar Publications

Enterovirus-D68 (EV68) continues to present as a global health issue causing respiratory illness and outbreaks associated with long-lasting neurological disease, with no antivirals or specific treatment options. The development of antiviral therapeutics, such as small-molecule inhibitors that target conserved proteins like the enteroviral 3C protease, remains to be achieved. While various 3C inhibitors have been investigated, their design does not consider the potential emergence of drug resistance mutations.

View Article and Find Full Text PDF

A communication network integrating multiple modes can effectively support the sustainable development of next-generation wireless communications. Integrated sensing, communication, and power transfer (ISCPT) represents an emerging technological paradigm that not only facilitates information transmission but also enables environmental sensing and wireless power transfer. To achieve optimal beamforming in transmission, it is crucial to satisfy multiple constraints, including quality of service (QoS), radar sensing accuracy, and power transfer efficiency, while ensuring fundamental system performance.

View Article and Find Full Text PDF

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

The scorpion Karsch is edible and has been an essential resource in traditional Chinese medicine for treating numerous diseases. In this study, two small peptides from hydrolysates were examined to elucidate their potential against gastric cancer. The small peptides (AK and GK) were identified using the LC-QTOF-MS-based approach.

View Article and Find Full Text PDF

This study aims to investigate the influence of cadmium (Cd) speciation transformation on P-wave velocity under different soil moisture conditions, providing critical insights into the subsurface characteristics of contaminated soils. Taking Cd-contaminated soil as the research subject, P-wave velocity and the speciation distribution of Cd in soils with different moisture contents and Cd adsorption levels were measured. The results reveal that when the soil is contaminated by Cd, the porosity is altered and it eventually lead to change P-wave velocity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!