Intercellular RNA trafficking has been shown as a widely-existing phenomenon that has significant functions in many aspects of biology. Viroids, circular noncoding RNAs that cause plant diseases, have been a model to dissect the role of RNA structural motifs in regulating intercellular RNA trafficking in plants. Recent studies on potato spindle tuber viroid (PSTVd) showed that the RNA motif loop 19 is important for PSTVd to spread from palisade to spongy mesophyll in infected leaves. Here, we performed saturated mutational analysis to uncover all possible functional variants of loop 19 and exploit this data to pinpoint to a three-dimensional structural model of this motif. Interestingly, we found that two distinct structural motifs can replace loop 19 and retain the systemic trafficking capacity. One of the alternative structures rapidly emerged from the inoculation using a loop 19 abolished mutant that is not capable of systemic trafficking. Our observation indicates the flexibility of multiple structural arrangements interchangeably exerting similar function at a particular RNA locus. Taken together, this study deepens the understanding of RNA structural motifs-regulated viroid RNA trafficking, which has broad implications for studying RNA intercellular trafficking as well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5923454 | PMC |
http://dx.doi.org/10.3390/v10040160 | DOI Listing |
FEBS Lett
January 2025
Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Soluble, circulating Klotho (sKlotho) is essential for normal health and renal function. sKlotho is shed from the renal distal convoluted tubule (DCT), its primary source, via enzymatic cleavage. However, the physiologic mechanisms that control sKlotho production, trafficking, and shedding are not fully defined.
View Article and Find Full Text PDFTherapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.
View Article and Find Full Text PDFJ Interpers Violence
January 2025
Coalition to Abolish Slavery & Trafficking, Los Angeles, CA, USA.
Weapon carrying and brandishing among youth is a serious public health issue. Recent data from the Centers for Disease Control's Youth Risk Behavior Survey suggests that as many as 1 in 15 male and 1 in 50 female students have carried a gun for nonrecreational purposes within the past 12 months. When examining weapon carrying more broadly, approximately one in eight adolescents report this behavior in the past 30 days alone.
View Article and Find Full Text PDFAMB Express
December 2024
Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.
Sodium butyrate (NaBu), well-known as a histone deacetylase inhibitor and for its capacity to impede cell growth, can enhance the production of a specific protein, such as an antibody, in recombinant Chinese hamster ovary (CHO) cell cultures. In this study, two CHO cell lines, namely K1 and DG44, along with their corresponding mAb-producing lines, K1-Pr and DG44-Pr, were cultivated with or without NaBu. A SWATH-based profiling method was employed to analyze the proteome.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA.
Unlabelled: are facultative intracellular bacterial pathogens that cause foodborne disease in humans. The bacteria can use the surface protein InlA to invade intestinal epithelial cells or transcytose across M cells in the gut, but it is not well understood how the bacteria traffic from the underlying lamina propria to the draining mesenteric lymph nodes (MLN). Previous studies indicated that associated with both monocytes and dendritic cells in the intestinal lamina propria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!