A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Celiac Diasease-associated lncRNA Named HCG14 Regulates NOD1 Expression in Intestinal Cells. | LitMetric

Objective: The aim of the study is to identify additional celiac disease associated loci in the major histocompatibility complex (MHC) independent from classical HLA risk alleles (HLA-DR3-DQ2) and to characterize their potential functional impact in celiac disease pathogenesis at the intestinal level.

Methods: We performed a high-resolution single-nucleotide polymorphism (SNP) genotyping of the MHC region, comparing HLA-DR3 homozygous celiac patients and non-celiac controls carrying a single copy of the B8-DR3-DQ2 conserved extended haplotype. Expression level of potential novel risk genes was determined by RT-PCR in intestinal biopsies and in intestinal and immune cells isolated from control and celiac individuals. Small interfering RNA-driven silencing of selected genes was performed in the intestinal cell line T84.

Results: MHC genotyping revealed 2 associated SNPs, one located in TRIM27 gene and another in the non-coding gene HCG14. After stratification analysis, only HCG14 showed significant association independent from HLA-DR-DQ loci. Expression of HCG14 was slightly downregulated in epithelial cells isolated from duodenal biopsies of celiac patients, and eQTL analysis revealed that polymorphisms in HCG14 region were associated with decreased NOD1 expression in duodenal intestinal cells.

Conclusions: We have successfully employed a conserved extended haplotype-matching strategy and identified a novel additional celiac disease risk variant in the lncRNA HCG14. This lncRNA seems to regulate the expression of NOD1 in an allele-specific manner. Further functional studies are needed to clarify the role of HCG14 in the regulation of gene expression and to determine the molecular mechanisms by which the risk variant in HCG14 contributes to celiac disease pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MPG.0000000000001970DOI Listing

Publication Analysis

Top Keywords

celiac disease
16
celiac
8
hcg14
8
nod1 expression
8
additional celiac
8
disease pathogenesis
8
celiac patients
8
conserved extended
8
cells isolated
8
risk variant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!