Background: Some glutamatergic modulators have demonstrated rapid and relatively sustained antidepressant properties in patients with major depressive disorder. Because the potassium channel activator diazoxide increases glutamate uptake via potassium channel activation, we hypothesized that it might exert antidepressant effects by increasing the removal of glutamate from the synaptic cleft, thereby reducing excessive glutamate transmission.

Methods: This randomized, double-blind, placebo-controlled, crossover, single-site inpatient clinical study was conducted at the National Institute of Mental Health to assess the efficacy and safety of a 3-week course of diazoxide (200-400 mg daily, twice a day) versus a 3-week course of placebo in 6 participants with treatment-refractory major depressive disorder. The primary clinical outcome measure was change in Montgomery-Asberg Depression Rating Scale score from baseline to posttreatment. Quantitative insulin sensitivity check index, as well as concomitant imaging measures (electroencephalography, proton magnetic resonance spectroscopy, magnetoencephalography), were used as potential surrogate markers of target (KATP channel) engagement.

Results: The study was halted due to severe adverse effects. Given the small sample size, statistical evaluation of the effect of diazoxide on Montgomery-Asberg Depression Rating Scale scores or the imaging measures was not pursued. Visual inspection of the quantitative insulin sensitivity check index test revealed no evidence of target engagement.

Conclusions: Although the results are negative, they are an important addition to the literature in this rapidly changing field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5903962PMC
http://dx.doi.org/10.1097/JCP.0000000000000866DOI Listing

Publication Analysis

Top Keywords

potassium channel
12
major depressive
12
depressive disorder
12
channel activator
8
activator diazoxide
8
3-week course
8
montgomery-asberg depression
8
depression rating
8
rating scale
8
quantitative insulin
8

Similar Publications

Single Na- and K-Ion-Conducting Sulfonated -NH-Linked Covalent Organic Frameworks.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.

Highly ion-conductive solid electrolytes of nonlithium ions (sodium or potassium ions) are necessary for pursuing a more cost-effective and sustainable energy storage. Here, two classes of sulfonated -NH-linked covalent organic frameworks (COFs), specifically designed for sodium or potassium ion conduction (named i-COF-2 (Na or K) and i-COF-3 (Na or K)), were synthesized through a straightforward, one-step process using affordable starting materials. Remarkably, these COFs demonstrate high ionic conductivity at room temperature─3.

View Article and Find Full Text PDF

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related death, likely stemming from seizure activity disrupting vital brain centres controlling heart and breathing function. However, understanding of SUDEP's anatomical basis and mechanisms remains limited, hampering risk evaluation and prevention strategies. Prior studies using a neuron-specific conditional knockout mouse model of SUDEP identified the primary importance of brain-driven mechanisms contributing to sudden death and cardiorespiratory dysregulation; yet, the underlying neurocircuits have not been identified.

View Article and Find Full Text PDF

Dissecting Causal Relationships Between Antihypertensive Drug, Gut Microbiota, and Type 2 Diabetes Mellitus and Its Complications: A Mendelian Randomization Study.

J Clin Hypertens (Greenwich)

January 2025

Department of Cardiology, Hypertension Research Laboratory, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Limited research has investigated the impact of antihypertensive medications on type 2 diabetes mellitus (T2DM) and whether gut microbiome (GM) mediates this association. Thus, we conducted a two-sample Mendelian randomization (MR) analysis to estimate the potential impact of various antihypertensive drug target genes on T2DM and its complications. Genetic instruments for the expression of antihypertensive drug target genes were identified with expression quantitative trait loci (eQTL) in blood, which should be associated with systolic blood pressure (SBP).

View Article and Find Full Text PDF

Regional blood flow within the brain is tightly coupled to regional neuronal activity, a process known as neurovascular coupling (NVC). In this study, we demonstrate the striking role of SUR2- and Kir6.1-dependent ATP-sensitive potassium (K) channels in control of NVC in the sensory cortex of conscious mice, in response to mechanical stimuli.

View Article and Find Full Text PDF

Liddle syndrome, a rare form of monogenic hypertension, poses significant diagnostic and therapeutic challenges due to its phenotypic variability and the need for genetic testing. The rarity of the condition, coupled with the limited availability of first-line treatments such as epithelial sodium channel (ENaC) blockers, makes this case report particularly urgent and novel, highlighting alternative management strategies in resource-limited settings. The aim of this case report was to present the diagnostic challenges, therapeutic strategies, and clinical outcomes of a patient with Liddle syndrome who did not have access to ENaC blockers, emphasizing the importance of early recognition and personalized treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!