Rare-earth-doped fiber lasers are emerging as promising high-power mid-infrared sources for the 2.6-3.0 μm and 3.3-3.8 μm regions based on erbium and holmium ions. The intermediate wavelength range, however, remains vastly underserved, despite prospects for important manufacturing and defense applications. Here, we demonstrate the potential of dysprosium-doped fiber to solve this problem, with a simple in-band pumped grating-stabilized linear cavity generating up to 1.06 W at 3.15 μm. A slope efficiency of 73% with respect to launched power (77% relative to absorbed power) is achieved-the highest value for any mid-infrared fiber laser to date, to the best of our knowledge. Opportunities for further power and efficiency scaling are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.43.001471DOI Listing

Publication Analysis

Top Keywords

fiber laser
8
slope efficiency
8
watt-level dysprosium
4
fiber
4
dysprosium fiber
4
laser 315  μm
4
315  μm 73%
4
73% slope
4
efficiency rare-earth-doped
4
rare-earth-doped fiber
4

Similar Publications

Background/aims: To identify the risk factors for neuropathic corneal pain (NCP) following corneal refractive surgery and to report its clinical manifestations, imaging and proteomic characteristics.

Methods: This 1 year prospective cohort study included 100 eyes that underwent small incision lenticule extraction (SMILE) or laser-assisted in situ keratomileusis (LASIK). Ocular surface assessments, in-vivo confocal microscopy scans, tear neuromediators and proteomics analyses were performed.

View Article and Find Full Text PDF

Observation of Optical Chaotic Solitons and Modulated Subharmonic Route to Chaos in Mode-Locked Laser.

Phys Rev Lett

December 2024

East China Normal University, State Key Laboratory of Precision Spectroscopy, and Hainan Institute, Shanghai, China.

We reveal a new scenario for the transition of solitons to chaos in a mode-locked fiber laser: the modulated subharmonic route. Its universality is confirmed in two different laser configurations, namely, a figure-of-eight and a ring laser. Numerical simulations of the laser models agree well with the experiments.

View Article and Find Full Text PDF

Purpose: To compare the effect on sexual function of ejaculation-sparing enucleation of the prostate using Thulium: YAG laser (ES-ThuLEP) versus continuous-wave Thulium Fiber Laser (ES-ThuFLEP).

Methods: 112 patients with lower urinary tract symptoms secondary to benign prostatic hyperplasia who wished to preserve ejaculation were treated. 58 patients underwent ES-ThuLEP (Group A) using the Cyber TM generator.

View Article and Find Full Text PDF

As a low-energy method to increase the data rate of optical links in data centers, we propose self-homodyne Nyquist optical time division multiplexing (OTDM). In Nyquist OTDM, spectrally efficient high-baud rate signals can be generated exceeding the limit of electronic signal processing. However, full integration of OTDM systems has not been reported, mainly because of the complicated signal detection scheme, which involves demultiplexing and clock recovery.

View Article and Find Full Text PDF

We demonstrate a widely spaced, stabilized, and self-referenced opto-electronic oscillator driven electro-optic modulator based optical frequency comb. Using an ultra-stable Fabry-Perot etalon as a stable reference, we simultaneously stabilize a CW laser and generate a low noise and stable RF oscillation used to drive an electro-optic comb. In such a manner, the Fabry-Perot etalon pins both the carrier-envelope-offset frequency ( ) and the repetition rate of the comb in place ( ), eliminating the need for an external RF oscillator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!