Background/aim: Cancer cells are distinct in terms of glutamine dependence. Here we investigated the different susceptibility of glutamine-independent and glutamine-dependent non-small cell lung cancer (NSCLC) to treatment with tumor necrosis factor receptor-associated protein 1 (TRAP1) inhibitor gamitrinib-triphenylphosphonium (G-TPP).

Materials And Methods: Cell viability and proliferation under glutamine deprivation and G-TPP treatment were determined by the MTT and colony-formation assays. Protein and mRNA expression were determined by western blot and quantitative polymerase chain reaction. Colorimetric-based assay was performed to check for glutamine synthetase (GS) activity.

Results: NSCLC cells showed diverse adaptation under glutamine-depleted condition and were categorized into glutamine-independent and glutamine-dependent cells. Treatment with G-TPP particularly increased GS activity and induced cell death due to energy shortage indicated by phosphorylated AMP-activated protein kinase (AMPK) in glutamine-dependent cells.

Conclusion: This finding provides better understanding of TRAP1-mediated glutamine metabolism through GS activity, and evidence that TRAP1 could be a promising therapeutic target for glutamine-addicted cancer.

Download full-text PDF

Source
http://dx.doi.org/10.21873/anticanres.12460DOI Listing

Publication Analysis

Top Keywords

glutamine synthetase
8
non-small cell
8
cell lung
8
lung cancer
8
cancer cells
8
glutamine-independent glutamine-dependent
8
glutamine
6
trap1 inhibition
4
inhibition increases
4
increases glutamine
4

Similar Publications

[Impact of Organic Amendment on the Bacterial Community and Rice Yield in Paddy Soil].

Huan Jing Ke Xue

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.

In this investigation, the influence of organic amendment on the structural and functional dynamics of soil microbial communities and its effect on rice productivity were examined. Five fertilization treatments from a 40-year field experiment were selected: no fertilizer (CK), inorganic NPK fertilizer (NPK), inorganic NPK combined with green manure (NG), inorganic NPK combined with green manure and pig manure (NGM), and inorganic NPK combined with green manure and rice straw (NGS). The findings revealed that the organic amendment enhanced the soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) levels, alongside an increase in rice yield; notably, the most significant improvements were observed with the NGM treatment.

View Article and Find Full Text PDF

Castration is widely used in poultry and livestock to enhance fat metabolism and improve the flavor, tenderness and juiciness of meat. However, the genetic regulatory mechanism underlying castration consequences have not been clarified. To investigate the key metabolites affecting the quality of capons and the key regulatory mechanisms, Qingyuan partridge roosters were subjected to castration.

View Article and Find Full Text PDF

Cardiac metastases are a rare site for metastatic hepatocellular carcinoma (HCC). We describe an atypical presentation of an isolated right ventricular metastasis of HCC following successful treatment with no evidence of primary disease recurrence. The case presented as gradually worsening hypertension and erythrocytosis in the setting of normal surveillance scans and alpha-fetoprotein levels.

View Article and Find Full Text PDF

Accumulating evidence indicates that inherited astrocyte dysfunction can be a primary trigger for epilepsy development; however, the available data are rather limited. In addition, astrocytes are considered as a perspective target for the design of novel and improvement of the existing antiepileptic therapy. Piracetam and related nootropic drugs are widely used in the therapy of various epileptic disorders, but detailed mechanisms of racetams action and, in particular, their effects on glial functions are poorly understood.

View Article and Find Full Text PDF

Nitrogen (N) is one of the three major elements required for plant growth and development. It is of great significance to study the effects of different nitrogen application levels on the growth and root exudates of Phlomoides rotata, and can provide a theoretical basis for its scientific application of fertilizer to increase production. In this study, Phlomoides rotata were grown under different nitrogen conditions for two months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!