Efficient In Vivo Liver-Directed Gene Editing Using CRISPR/Cas9.

Mol Ther

Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium. Electronic address:

Published: May 2018

In vivo tissue-specific genome editing at the desired loci is still a challenge. Here, we report that AAV9-delivery of truncated guide RNAs (gRNAs) and Cas9 under the control of a computationally designed hepatocyte-specific promoter lead to liver-specific and sequence-specific targeting in the mouse factor IX (F9) gene. The efficiency of in vivo targeting was assessed by T7E1 assays, site-specific Sanger sequencing, and deep sequencing of on-target and putative off-target sites. Though AAV9 transduction was apparent in multiple tissues and organs, Cas9 expression was restricted mainly to the liver, with only minimal or no expression in other non-hepatic tissues. Consequently, the insertions and deletion (indel) frequency was robust in the liver (up to 50%) in the desired target loci of the F9 gene, with no evidence of targeting in other organs or other putative off-target sites. This resulted in a substantial loss of FIX activity and the emergence of a bleeding phenotype, consistent with hemophilia B. The in vivo efficacy of the truncated gRNA was as high as that of full-length gRNA. Cas9 expression was transient in neonates, representing an attractive "hit-and-run" paradigm. Our findings have potentially broad implications for somatic gene targeting in the liver using the CRISPR/Cas9 platform.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993986PMC
http://dx.doi.org/10.1016/j.ymthe.2018.02.023DOI Listing

Publication Analysis

Top Keywords

putative off-target
8
off-target sites
8
cas9 expression
8
efficient in vivo
4
in vivo liver-directed
4
gene
4
liver-directed gene
4
gene editing
4
editing crispr/cas9
4
crispr/cas9 in vivo
4

Similar Publications

A High-Throughput Screening Pipeline to Identify Methyltransferase and Exonuclease Inhibitors of SARS-CoV-2 NSP14.

Biochemistry

January 2025

National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States.

SARS-CoV-2 infections led to a worldwide pandemic in 2020. As of 2024, therapeutics against SARS-CoV-2 have continued to be desirable. NSP14 is a dual-function methyltransferase (MTase) and exonuclease (ExoN) with key roles in SARS-CoV-2 genome propagation and host immune system evasion.

View Article and Find Full Text PDF

The massive increase in the amount of plastid genome data have allowed researchers to address a variety of evolutionary questions within a wide range of plant groups. While plastome structure is generally conserved, some angiosperm lineages exhibit structural changes. Such is the case of the megadiverse order Asterales, where rearrangements in plastome structure have been documented.

View Article and Find Full Text PDF

Comprehensive genome-wide studies are needed to assess the consequences of adeno-associated virus (AAV) vector-mediated gene editing. We evaluated CRISPR-Cas-mediated on-target and off-target effects and examined the integration of the AAV vectors employed to deliver the CRISPR-Cas components to neonatal mice livers. The guide RNA (gRNA) was specifically designed to target the factor IX gene (F9).

View Article and Find Full Text PDF

Two invasive hemipteran adelgids cause widespread damage to North American conifers. (the hemlock woolly adelgid) has decimated and (the Eastern and Carolina hemlocks, respectively). was introduced from East Asia and reproduces parthenogenetically in North America, where it can kill trees rapidly.

View Article and Find Full Text PDF

Widely regarded as a so-called "superfood," microgreens have become an increasingly significant food crop from both nutritional and agricultural standpoints. However, similar to other produce commodities that are also cultivated using modernized indoor farming methods, there have been mounting concerns over the potential risks of consuming microgreens contaminated by Listeria monocytogenes. To gain insights into the microbial properties of microgreens, this study characterized the bacterial composition of fresh microgreen retail products using amplicon sequencing of 16S rRNA genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!