Med Eng Phys
ESPCI Paris, PSL Research University, CNRS UMR 7083 Gulliver, 10 rue Vauquelin, 75231 Paris Cedex 05, France; Sorbonne Universités, Université de Technologie de Compiègne, CNRS UMR 7338 Biomécanique et Bioingénierie, Centre de recherche Royallieu, CS 60 319, Compiègne cedex 60 203, France. Electronic address:
Published: May 2018
Blood platelets circulate in the blood and adhere to wounded vessels to initiate coagulation and healing. The first step of this process is the capture of flowing platelets by adhesive molecules located at the wounded vessel wall. In this article, we study the transport of fixed blood platelets in a microfluidic channel coated with von Willebrand factor (vWF), a large multimeric protein expressed by endothelial cells in the vicinity of wounds. We measure the number of platelets adsorbed at the channel surface as a function of both time and space. Experimental results are compared with a new transport model. We show that transverse diffusion is an important feature of our model, while the rolling behaviour of the bounded platelets can be neglected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2018.03.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.