Ultraviolet (UV) curing is a photopolymerization technique resulting in a three-dimensional polymer network from monomers and oligomers after exposure to UV light, which is often used for fusion industry. However, shrinkage is an issue that needs to be resolved. Studies of single substances have been extensively conducted, but studies of mixture systems have not sufficiently been undertaken. In this study, we evaluate the shrinkage phenomenon by studying a monomer/monomer binary system and monomer/macromer composite systems. Shrinkage tends to increase when compounds varying in size are used. Similar to the shrinkage phenomenon, the curing rate is also relatively higher in such systems. These synergistic effects are evaluated to be due to the nano-porous effect, and vary with the composition ratio and material structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5951355PMC
http://dx.doi.org/10.3390/ma11040509DOI Listing

Publication Analysis

Top Keywords

mixture systems
8
shrinkage phenomenon
8
evaluation curing
4
curing properties
4
properties mixture
4
systems
4
systems differently
4
differently sized
4
sized monomers
4
monomers ultraviolet
4

Similar Publications

Accurate Dehydrogenation Enthalpies Dataset for Liquid Organic Hydrogen Carriers.

Sci Data

January 2025

Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.

This contribution presents a comprehensive extension of the QM9 dataset (originally at 133 K molecules) with the calculation of G4MP2 enthalpies for 9,841 molecules, featuring up to nine heavy atoms. We present QM9-LOHC, a (de)hydrogenation dataset of 10,373 reactions, including a minimum of 5.5% weight hydrogen storage capacity in line with the Department of Energy standards for Liquid Organic Hydrogen Carriers (LOHC).

View Article and Find Full Text PDF

Breast milk (BM) is the main nutrition source for infants that plays a key role on growth and development. Human milk composition includes endogenous and exogenous substances, including endocrine disrupting chemicals (EDCs). EDCs are man-made environmental chemicals present in everyday environment and food that can disrupt the programming of endocrine signalling pathways during development, resulting in adverse effects that may not be apparent until much later in life.

View Article and Find Full Text PDF

Cofactor-directed co-immobilization of dual-enzyme on functionalized montmorillonite with enhanced catalytic performance.

Int J Biol Macromol

January 2025

School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.

Recently, multi-enzyme cascade catalysis has attracted increasing attention due to the advantages of integrating multiple enzymes, few side reactions and high catalytic efficiency. Herein, a novel dual-enzyme cascade system (GOx-FMt-HRP) was developed through cofactor-directed orientational co-immobilization of glucose oxidase (GOx) and horseradish peroxidase (HRP) onto functional montmorillonite (FMt). The presented method realizes the reconstitution of cofactors and apo-enzymes (enzymes without cofactors), which enables enzymes to be immobilized in specific orientations on the support, thereby effectively reducing changes in their conformation.

View Article and Find Full Text PDF

Investigation of aerosol jet printing for the preparation of solid dosage forms.

Int J Pharm

January 2025

EPSRC CMAC Future Manufacturing Research Hub, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 99 George Street, Glasgow G1 1RD UK; The Cancer Research UK Formulation Unit, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE UK.

Oral drug delivery remains the preferred method of drug administration but due to poor solubility many active pharmaceutical ingredients (APIs) are ill suited to this. A number of methods to improve solubility of poorly soluble Biopharmaceutical Classification System (BCS) Class II drugs already exist but there is a lack of scalable, flexible methods. As such the current study applies the innovative technique of aerosol jet printing to increase the dissolution capabilities of a Class II drug in a manner which permits flexibility to allow dosage form tailoring.

View Article and Find Full Text PDF

This study introduces a novel approach to enhance the antibacterial properties of UIO-66 by incorporating both Thymol and ZnO nanoparticles within its framework which represents a significant advancement like exhibiting a synergistic antibacterial effect, providing a prolonged and controlled release, and mitigating cytotoxicity associated with the release of free ZnO nanoparticles by combining these two antimicrobial agents within a single, well-defined metal-organic framework. UIO-66 frameworks are investigated as carriers for the natural antimicrobial agent, Thymol, and ZnONPs offering a novel drug delivery system for antibacterial applications. Results demonstrated 132, 90, 184, and 223 nm sizes for UIO-66, ZnONPs, UIO-66 encapsulated Thymol, and UIO-66 encapsulated both Thymol and ZnONPs, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!