Genome wide mRNA expression analysis of small and large luteal cells, isolated from the mature staged corpora lutea (CL), was not performed in any species. In the current study, we have isolated bovine small and large luteal cells from mid-cycle (day 10-11) animals and characterized their transcriptomes using "GeneChip™ Bovine Gene 1.0 ST Arrays". A total of 1276 genes were identified to be differentially expressed between small and large luteal cells. Data evaluation revealed that novel functions, extracellular matrix synthesis and immune cell recruitment, were enriched in small luteal cells. On contrary, functions regarding the regulation of folliculogenesis, luteal regression, fatty acid and branched chain amino acid metabolism were differentially enriched in large luteal cells. Overall, the current data offer a first and detailed insight into the functional roles of small and large luteal cells in the mature bovine corpus luteum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2018.03.011DOI Listing

Publication Analysis

Top Keywords

luteal cells
28
large luteal
20
small large
16
expression analysis
8
luteal
8
small luteal
8
extracellular matrix
8
immune cell
8
cell recruitment
8
bovine corpus
8

Similar Publications

The study aimed to establish a long-term 3D cell culture model using luteinized follicular cells to investigate the functionality and life cycle of the CL in felids. A mixture of cell types from antral follicles was luteinized in vitro and cultured for up to 23 days. The method, initially applied to the domestic cat, was later extended to Persian and Clouded leopards.

View Article and Find Full Text PDF

The embryonic diapause of the giant panda (Ailuropoda melanoleuca) has caused great difficulties in monitoring pregnancy in this vulnerable species. The secretion of prolactin (PRL) from anterior pituitary glandular lactotropic cells is an important signal for the termination of embryonic dormancy. Currently, the mechanism by which PRL affects embryonic diapause in giant pandas and methods for detecting PRL in this species are poorly understood.

View Article and Find Full Text PDF

APN/AdipoRon regulates luteal steroidogenesis through AMPK/EZH2/H3K27me3 in goats.

J Steroid Biochem Mol Biol

December 2024

College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China. Electronic address:

AMPK plays a crucial role in cellular energy metabolism and is involved in the regulation of luteal steroidogenesis by APN and its analog AdipoRon. To further explore the regulatory mechanism of AMPK in goat luteal steroidogenesis mediated by APN, cyclic and pregnant CL were utilized to assess the localization and expression of AMPK, EZH2, H3K27me3 and H3K27ac by WB and mIHC, and the interaction between AMPK and EZH2 by Co-IP. Then, isolated luteal cells were treated with APN/AdipoRon to evaluate the expression levels of AMPK, EZH2, H3K27me3 and H3K27ac.

View Article and Find Full Text PDF

Objective: Female mice exhibit progressive progesterone (P4) deficiency, luteal cell degeneration, and premature embryo implantation failure at 5 months old. We attempted to rescue embryo implantation in non-virgin mice (5-6 months old) with exogenous P4 treatment on days 1.5 post-coitum (D1.

View Article and Find Full Text PDF

Metabolic control of luteinizing hormone-responsive ovarian steroidogenesis.

J Biol Chem

November 2024

Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska, USA; VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA. Electronic address:

Article Synopsis
  • Luteinizing hormone (LH) is key for ovulation and progesterone production across species but knowledge gaps remain about the metabolic processes involved.
  • Research using metabolomics in luteal cells shows that LH rapidly activates pathways that increase glycolysis and oxygen use, stimulating lipid production.
  • Discoveries highlight the importance of fatty acid synthesis and oxidation in progesterone production, suggesting potential approaches to improve ovarian function and create non-hormonal contraceptives.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!