Troponin T3 associates with DNA consensus sequence that overlaps with p53 binding motifs.

Exp Gerontol

Departments of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States. Electronic address:

Published: July 2018

We recently reported that in addition to its classical cytoplasmic location, the fast skeletal muscle Troponin T3 (TnT3) shuttles to the nucleus, where it appears to perform nonclassical transcription regulatory functions. Importantly, changes in the composition of the nucleus-localized pool of TnT3 and its fragments contribute to age-dependent muscle damage and wasting. Here, using ChIP-Seq, we demonstrate that TnT3 associates with DNA consensus sequences including the TGCCT motif, which is required for p53 binding to the promoter area of p53-related genes. Gene set enrichment analysis further demonstrated that the p53 pathway was the most significantly enriched pathway among genes annotated to the TnT3 ChIP-Seq peaks. We further demonstrated a strong correlation (r = 0.78, P = 1 × 10) between the expression levels of TNNT3 and TP53-inducible ribonucleotide reductase regulatory subunit M2B (RRM2B) in skeletal muscle tissue of 21 lean non-diabetic human subjects and a significant (P < 0.05) reduction in the levels of both gene transcripts in the third age-tertile group [42.3-70 years of age (yoa)] as compared to the second age-tertile (31.3-42.3 yoa). Of note, both TNNT3 and RRM2B expression levels negatively associated with total body fat mass (each with r = 0.49, P < 0.05), whereas RRM2B positively correlated with pancreatic β cell function (r = 0.47, P = 0.047). This work suggests that reduced TNNT3 gene expression is another mechanism leading to reduced TnT3 and excitation-contraction coupling with aging. Consequently, TnT3 appears to contribute to age-related sarcopenia and possibly other age-related deficiencies such as muscle insulin resistance and β cell dysfunction by interacting with TnT3-binding sequences in the promoter area of p53-related genes, among others, and consequently modulating the transcriptional regulation of these target genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994179PMC
http://dx.doi.org/10.1016/j.exger.2018.03.012DOI Listing

Publication Analysis

Top Keywords

associates dna
8
dna consensus
8
p53 binding
8
skeletal muscle
8
troponin associates
4
consensus sequence
4
sequence overlaps
4
overlaps p53
4
binding motifs
4
motifs reported
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!