To grow straight and upright, plants need to regulate actively their posture. Gravitropic movement, which occurs when plants modify their growth and curvature to orient their aerial organ against the force of gravity, is a major feature of this postural control. A recent model has shown that graviception and proprioception are sufficient to account for the gravitropic movement and subsequent organ posture demonstrated by a range of species. However, some plants, including wheat coleoptiles, exhibit a stronger regulation of posture than predicted by the model. Here, we performed an extensive kinematics study on wheat coleoptiles during a gravitropic perturbation (tilting) experiment in order to better understand this unexpectedly strong regulation. Close temporal observations of the data revealed that both perturbed and unperturbed coleoptiles showed oscillatory pulses of elongation and curvature variation that propagated from the apex to the base of their aerial organs. In perturbed coleoptiles, we discovered a non-trivial coupling between the oscillatory dynamics of curvature and elongation. The relationship between those oscillations and the postural control of the organ remains unclear, but indicates the presence of a mechanism that is capable of affecting the relationship between elongation rate, differential growth, and curvature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875799PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194893PLOS

Publication Analysis

Top Keywords

growth curvature
12
gravitropic movement
12
wheat coleoptiles
12
postural control
8
curvature
5
coleoptiles
5
coupled ultradian
4
ultradian growth
4
curvature oscillations
4
gravitropic
4

Similar Publications

Diisooctyl phthalate (DIOP), a common phthalate plasticizer, is frequently encountered in everyday life. Despite its widespread use, there is a dearth of toxicological research on DIOP, resulting in incomplete knowledge of its potential harmful effects. Our current research endeavored to provide a comprehensive evaluation of DIOP's toxicological profile using both cellular and Caenorhabditis elegans models as our in vitro and in vivo study subjects.

View Article and Find Full Text PDF

Region-specific biomechanical characterization of ascending thoracic aortic aneurysm of hypertensive patients with bicuspid aortic valves.

Biomech Model Mechanobiol

December 2024

Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, 500 Zhennan Road, Shanghai, 200331, People's Republic of China.

Hypertension and bicuspid aortic valve (BAV) are key clinical factors that may affect local biomechanical properties of ascending thoracic aortic aneurysms (ATAAs). This study sought to investigate regional differences in biaxial mechanical properties of the ATAAs for the hypertensive patients with BAV. Fresh ATAA samples were harvested from 16 hypertensive patients (age, 66 ± 9 years) undergoing elective aortic surgery.

View Article and Find Full Text PDF

Objectives: To investigate which phosphodiesterase (PDE) isoforms are expressed in fibroblasts isolated from the tunica albuginea (TA) of patients with Peyronie's disease (PD), and to measure the potency of PDE inhibitors in preventing transformation of these fibroblasts to profibrotic myofibroblasts.

Materials And Methods: Fibroblasts isolated from the TA of men undergoing surgery for correction of PD curvature were transformed to myofibroblasts using transforming growth factor beta-1. The expression of 21 PDE isoforms was investigated using quantitative reverse transcriptase-polymerase chain reaction and protein analysis, as were the effects of various PDE inhibitors on prevention of myofibroblast transformation.

View Article and Find Full Text PDF

This study aims to investigate the effect of Anmeidan on hippocampal neurons and synaptic microenvironments in sleep-deprived rats. Sixty SD rats were randomly divided into blank, model, Anmeidan, and melatonin groups, with 15 rats in one group. The study used the multi-platform method to prepare the sleep deprivation model.

View Article and Find Full Text PDF

Background: Fetal skeletal dysplasia (FSD) is a group of systemic bone and cartilage disorders that develop prenatally and can be detected using fetal ultrasonography. However, it is unsuitable for skeletal analysis because it is reflected by supersonic waves in the bone cortex. Three-dimensional computed tomography (3D-CT) is a suitable alternative and has improved the differential diagnosis of FSD during pregnancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!