A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative N-glycoproteomics reveals altered glycosylation levels of various plasma proteins in bloodstream infected patients. | LitMetric

Bloodstream infections are associated with high morbidity and mortality with rates varying from 10-25% and higher. Appropriate and timely onset of antibiotic therapy influences the prognosis of these patients. It requires the diagnostic accuracy which is not afforded by current gold standards such as blood culture. Moreover, the time from blood sampling to blood culture results is a key determinant of reducing mortality. No established biomarkers exist which can differentiate bloodstream infections from other systemic inflammatory conditions. This calls for studies on biomarkers potential of molecular profiling of plasma as it is affected most by the molecular changes accompanying bloodstream infections. N-glycosylation is a post-translational modification which is very sensitive to changes in physiology. Here we have performed targeted quantitative N-glycoproteomics from plasma samples of patients with confirmed positive blood culture together with age and sex matched febrile controls with negative blood culture reports. Three hundred and sixty eight potential N-glycopeptides were quantified by mass spectrometry and 149 were further selected for identification. Twenty four N-glycopeptides were identified with high confidence together with elucidation of the peptide sequence, N-glycosylation site, glycan composition and proposed glycan structures. Principal component analysis, orthogonal projections to latent structures-discriminant analysis (S-Plot) and self-organizing maps clustering among other statistical methods were employed to analyze the data. These methods gave us clear separation of the two patient classes. We propose high-confidence N-glycopeptides which have the power to separate the bloodstream infections from blood culture negative febrile patients and shed light on host response during bacteremia. Data are available via ProteomeXchange with identifier PXD009048.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875812PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0195006PLOS

Publication Analysis

Top Keywords

blood culture
20
bloodstream infections
16
quantitative n-glycoproteomics
8
blood
6
bloodstream
5
culture
5
n-glycoproteomics reveals
4
reveals altered
4
altered glycosylation
4
glycosylation levels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!