Eleven quick tips for architecting biomedical informatics workflows with cloud computing.

PLoS Comput Biol

Institute for Biomedical Informatics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

Published: March 2018

Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world's largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875741PMC
http://dx.doi.org/10.1371/journal.pcbi.1005994DOI Listing

Publication Analysis

Top Keywords

cloud computing
24
quick tips
8
tips architecting
8
architecting biomedical
8
biomedical informatics
8
informatics workflows
8
cloud
8
workflows cloud
8
computing
6
eleven quick
4

Similar Publications

Integrating Machine Learning for Predictive Maintenance on Resource-Constrained PLCs: A Feasibility Study.

Sensors (Basel)

January 2025

Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy.

This study investigates the potential of deploying a neural network model on an advanced programmable logic controller (PLC), specifically the Finder Opta™, for real-time inference within the predictive maintenance framework. In the context of Industry 4.0, edge computing aims to process data directly on local devices rather than relying on a cloud infrastructure.

View Article and Find Full Text PDF

For public security purposes, distributed surveillance systems are widely deployed in key areas. These systems comprise visual sensors, edge computing boxes, and cloud servers. Resource scheduling algorithms are critical to ensure such systems' robustness and efficiency.

View Article and Find Full Text PDF

With the increasing speed of genomic, transcriptomic, and metagenomic data generation driven by the advancement and widespread adoption of next-generation sequencing technologies, the management and analysis of large-scale, diverse data in the fields of life science and biotechnology have become critical challenges. In this paper, we thoroughly discuss the use of cloud data warehouses to address these challenges. Specifically, we propose a data management and analysis framework using Snowflake, a SaaS-based data platform.

View Article and Find Full Text PDF

Objective: To develop an original-mirror alignment associated deep learning algorithm for intelligent registration of three-dimensional maxillofacial point cloud data, by utilizing a dynamic graph-based registration network model (maxillofacial dynamic graph registration network, MDGR-Net), and to provide a valuable reference for digital design and analysis in clinical dental applications.

Methods: Four hundred clinical patients without significant deformities were recruited from Peking University School of Stomatology from October 2018 to October 2022. Through data augmentation, a total of 2 000 three-dimensional maxillofacial datasets were generated for training and testing the MDGR-Net algorithm.

View Article and Find Full Text PDF

Optimizing healthcare big data performance through regional computing.

Sci Rep

January 2025

Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates.

The healthcare sector is experiencing a digital transformation propelled by the Internet of Medical Things (IOMT), real-time patient monitoring, robotic surgery, Electronic Health Records (EHR), medical imaging, and wearable technologies. This proliferation of digital tools generates vast quantities of healthcare data. Efficient and timely analysis of this data is critical for enhancing patient outcomes and optimizing care delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!