Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Preterm birth temporarily disrupts autonomic nervous system (ANS) development, and the long-term impacts of disrupted fetal development are unclear in children. Abnormal cardiac ANS function is associated with worse health outcomes, and has been identified as a risk factor for cardiovascular disease. We used heart rate variability (HRV) in the time domain (standard deviation of RR intervals, SDRR; and root means squared of successive differences, RMSSD) and frequency domain (high frequency, HF; and low frequency, LF) at rest, as well as heart rate recovery (HRR) following maximal exercise, to assess autonomic function in adolescent children born preterm. Adolescents born preterm (less than 36 weeks gestation at birth) in 2003 and 2004 and healthy age-matched full-term controls participated. Wilcoxon Rank Sum tests were used to compare variables between control and preterm groups. Twenty-one adolescents born preterm and 20 term-born controls enrolled in the study. Preterm-born subjects had lower time-domain HRV, including SDRR (69.1 ± 33.8 vs. 110.1 ± 33.0 msec, respectively, P = 0.008) and RMSSD (58.8 ± 38.2 vs. 101.5 ± 36.2 msec, respectively, P = 0.012), with higher LF variability in preterm subjects. HRR after maximal exercise was slower in preterm-born subjects at 1 min (30 ± 12 vs. 39 ± 9 bpm, respectively, P = 0.013) and 2 min (52 ± 10 vs. 60 ± 10 bpm, respectively, P = 0.016). This study is the first report of autonomic dysfunction in adolescents born premature. Given prior association of impaired HRV with adult cardiovascular disease, additional investigations into the mechanisms of autonomic dysfunction in this population are warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875539 | PMC |
http://dx.doi.org/10.14814/phy2.13620 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!