The aim of this study was to investigate potential cellular responses and biological effects of new generation dental composites on cortical neuron cells in two different exposure times. The study group included five different bulk-fill flow able composites; Surefil SDR Flow, X-tra Base Flow, Venus Bulk Flow, Filtek Bulk Flow and Tetric-Evo Flow. They were filled in Teflon molds (Height: 4 mm, Width: 6 mm) and irradiated for 20 s. Cortical neuron cells were inoculated into 24-well plates. After 80% of the wells were coated, the 3 µm membrane was inserted and dental filling materials were added. The experiment was continued for 24 and 72 h. Cell viability measured by MTT assay test, total antioxidant and total oxidant status were examined using real assay diagnostic kits. The patterns of cell death (apoptosis) were analyzed using annexin V-FITC staining with flow cytometry. Β-defensins were quantitatively assessed by RT-PCR. IL-6, IL-8 and IL-10 cytokines were measured from the supernatants. All composites significantly affected analyses parameters during the exposure durations. Our data provide evidence that all dental materials tested are cytotoxic in acute phase and these effects are induced cellular death after different exposure periods. Significant cytotoxicity was detected in TE, XB, SS, FBF and VBF groups at 24 and 72 h, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153994 | PMC |
http://dx.doi.org/10.1007/s10266-018-0354-5 | DOI Listing |
Nat Cell Biol
January 2025
Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM.
View Article and Find Full Text PDFTrimethyltin chloride (TMT), an organotin compound with potent neurotoxicity, is widely used as a heat stabilizer for plastics. However, the precise pathogenic mechanism of TMT remains incompletely elucidated, and there persists a dearth of sensitive detection methodologies for early diagnosis of TMT. In this study, Sprague-Dawley rats were treated with 10 mg/kg TMT to simulate acute exposure in humans.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Pharmacy, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
Ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) is a chromatin modifier responsible for regulating the demethylation of histone H3 lysine 27 trimethylation (H3K27me3), which is crucial for human neurodevelopment. To date, the impact of UTX on neurodevelopment remains elusive. Therefore, this study aimed to investigate the potential molecular mechanisms underlying the effects of UTX on neurodevelopment through untargeted metabolomics based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).
View Article and Find Full Text PDFJ Neurosci
January 2025
Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China, 350122.
The development of the nervous system is a complex process, with many challenging scientific questions yet to be resolved. Disruptions in brain development are strongly associated with neurodevelopmental disorders, such as intellectual disability and autism. While the genetic basis of autism is well established, the precise pathological mechanisms remain unclear.
View Article and Find Full Text PDFExp Neurol
January 2025
Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA.
Migraine patients often experience sensory symptoms called auras accompanying the headaches. Cortical spreading depression (CSD), a slow-propagating wave of neuroglial depolarization followed by hyperpolarization is proposed to be the neurological mechanism underlying these auras. We have previously found that progesterone regulates susceptibility to migraine through progesterone receptor (PR) activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!