Persistent organic pollutants (POPs) are key pollutants due to their persistence, refractory biodegradation, high toxicity and bioaccumulation in the food chain. This review (with 93 refs.) covers the progress made in the past decades in the application of carbonaceous materials for electrochemical detection of POPs as listed in the Stockholm Convention. Following an introduction into the field, typical carbonaceous materials for use in electrodes are discussed, with subsection on carbon nanotubes, graphene, reduced graphene oxide, graphitic carbon nitride and carbon dots. This is followed by a section on application of carbonaceous materials in electrochemical detection, with subsections on the use of carbon nanotubes, of (doped-) graphene, of reduced graphene oxide, of graphitic carbon nitride, and of carbon dots. The review concludes with conclusions and future perspectives. The detection mechanisms of POPs are also discussed. Graphical abstract Advanced carbonaceous materials for the electrochemical determination of persistent organic pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-017-2638-9DOI Listing

Publication Analysis

Top Keywords

carbonaceous materials
20
materials electrochemical
16
persistent organic
12
organic pollutants
12
electrochemical determination
8
determination persistent
8
application carbonaceous
8
electrochemical detection
8
carbon nanotubes
8
graphene reduced
8

Similar Publications

As a potential alternative to next-generation LIBs, carbonous materials have garnered significant attention as anode materials for potassium-ion batteries due to their low cost and environmental friendliness. However, carbonaceous materials cannot fulfill the demand of anode for PIBs, due to volume expansion and poor stability during charging/discharging process. It is well-known that N doping can provide active sites for K-storage, and expand the layer distance between graphite layers.

View Article and Find Full Text PDF

High Capacity and Ultralong Lifespan Aqueous Lithium-Bromine Batteries Realized by Low-Cost Concentrated Electrolyte Coupled with Dependable Lithium Titanium Phosphate.

ACS Appl Mater Interfaces

January 2025

Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.

Aqueous halogen batteries are gaining recognition for large-scale energy storage due to their high energy density, safety, environmental sustainability, and cost-effectiveness. However, the limited electrochemical stability window of aqueous electrolytes and the absence of desirable carbonaceous hosts that facilitate halogen redox reactions have hindered the advancement of halogen batteries. Here, a low-cost, high-concentration 26 m Li-B-C-O aqueous solution incorporating lithium bromide (LiBr), lithium chloride (LiCl), and lithium acetate (LiOAc) was developed for aqueous batteries, which demonstrated an expanded electrochemical stability window of .

View Article and Find Full Text PDF

Metal-Support Interactions in PdCu/NiZnP Nanohybrids Enhance Alcohol Electrooxidation.

Inorg Chem

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China.

Developing high-performance catalysts for the alcohol electrooxidation reaction is of significant importance for the practical application of direct fuel cells. Herein, a supported catalyst consisting of well-dispersive PdCu nanoparticles (NPs) and ultrathin NiZnP nanosheets (NSs) is synthesized. The high-surface-area NiZnP NSs provide a platform for good dispersion of PdCu NPs, resulting in stable catalysts with a large number of exposed surface atoms.

View Article and Find Full Text PDF

Five commercially available cut-resistant gloves were sourced from four different worldwide manufacturers which were advertised to contain graphene. A method was developed to assess the fibers composing each glove, including dissolution of the constituent fibers using sulfuric acid or liquid paraffin at elevated temperature, to extract and analyze particle additives. Scanning electron microscopy with energy-dispersive X-ray spectroscopy was applied to fibers and extracted particles for morphological and elemental analysis; Raman spectroscopy was applied to discern the composition of carbonaceous materials for the ultimate purpose of identifying any graphenic additives.

View Article and Find Full Text PDF

Hydrothermal carbonization (HTC) of carbohydrates has been reported as a sustainable and green technique to produce carbonaceous micro- and nano-materials. These materials have been developed for several applications, including catalysis, separation science, metal ion adsorption and nanomedicine. Carbon nanoparticles (CNPs) obtained through HTC are particularly interesting for the latter application since they exhibit photothermal properties when irradiated with near-infrared (NIR) light, act as an antioxidant by scavenging reactive oxygen species (ROS), and present good colloidal stability and biocompatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!