An ultrasensitive immunosensor for the direct detection of the illegally used livestock feed clebuterol (CLB) is described. It is based on the use of a glassy carbon electrode modified with an MoS-AuPt nanocomposite and on biotin-streptavidin interaction. The use of MoS-AuPt accelerates electron transfer, and this leads to a sharp increase in the electrochemical signal for the electrochemical probe hydrogen peroxide. Differential pulse voltammetry was used to record the current signal at a peak potential of -0.18 V (vs SCE). Under optimal conditions, the electrode has a linear response in the 10 pg·mL to 100 ng·mL CLB concentration range and a 6.9 pg·mL detection limit (based on the 3σ criterium). This immunosensor is sensitive, highly specific and acceptably reproducible, and thus represents a valuable tool for the determination of CLB in pork. Graphical abstract Schematic of a voltammetric immunosensor for the determination of clenbuterol (CLB) based on the use of a nanocomposite prepared from molybdenum disulfide and a gold-platinum alloy (MoS-AuPt), and making use of the biotin-streptavidin system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-018-2746-1 | DOI Listing |
Foods
January 2025
School of Food and Biological Engineering, Engineering Research Center of Bio-Process of Ministry of Education, Anhui Province Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China.
Due to their lipophilicity and low content, the major sesame oleosin allergens, Ses i 4 and Ses i 5, are challenging to identify using conventional techniques. Then, a novel unlabeled electrochemical immunosensor was developed to detect the potential allergic activity of sesame oleosins. The voltammetric immunosensor was constructed using a composite of gold nanoparticles (AuNPs), polyethyleneimine (PEI), and multi-walled carbon nanotubes (MWCNTs), which was synthesized in a one-pot process and modified onto a glass carbon electrode to enhance the catalytic current of the oxygen reduction reaction.
View Article and Find Full Text PDFAnalyst
December 2024
Department of Neurology, Fuzhou Second General Hospital, School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 350007, China.
The sensitive and accurate identification of interleukin-6 (IL-6) in biological fluids is essential for assessing migraine due to its role in different physiological and pathological processes. In this study, we designed a simple and feasible electrochemical immunosensing method for the voltammetric measurement of IL-6. The electrochemical immunosensor was fabricated through covalent conjugation of anti-IL-6 capture antibodies on the glassy carbon electrode with a typical carbodiimide coupling method.
View Article and Find Full Text PDFAnal Biochem
February 2025
Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; Laboratory of Virology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia. Electronic address:
Food Chem
December 2024
REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal.
Celery is a food allergen that must be included in the ingredient list of commercial food products in the European Union. This is a challenge for the food industry because of potential cross-contamination and undeclared ingredients because of their low concentrations. So, the food industry requires expedited high-performance analytical methods.
View Article and Find Full Text PDFInt J Biol Macromol
July 2024
School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
In recent decades, there has been a concerning and consistent rise in the incidence of cancer, posing a significant threat to human health and overall quality of life. The transferrin receptor (TfR) is one of the most crucial protein biomarkers observed to be overexpressed in various cancers. This study reports on the development of a novel voltammetric immunosensor for TfR detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!