This paper describes a voltammetric method for sensitive determination of specific sequences of DNA. The assay is based on three-dimensional nitrogen-doped graphene (3D-NG) which, due to its excellent electrical conductivity, provides a favorable microenvironment to retain the activity of immobilized probe single-stranded DNA and also facilitates electron transfer. The free-standing 3D-NG electrode was characterized by scanning electron microscopy, Raman and X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Differential pulse voltammetry was applied to monitor DNA hybridization using Methylene Blue as an electrochemical indicator. Under optimal conditions, the peak currents (best measured at 0.28 V vs. Ag/AgCl) increase linearly with the logarithm of the concentrations of ssDNA in the 10 f. to 10 nM concentrations range, with a 3.5 f. detection limit (at a signal/noise ratio of 3). The biosensor exhibits good selectivity for ssDNA and can distinguish even single-base mismatches. The capability of the method was tested with spiked serum samples, and excellent reproducibility and stability is found. This indicates that the strategy is promising for use in clinical applications. Graphical abstract Three-dimensional nitrogen-doped graphene as an innovative and simple electrochemical DNA biosensor was fabricated and used in a biosensor that shows high sensitivity and good performance in the determination of target DNA in human serum samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-017-2588-2 | DOI Listing |
J Colloid Interface Sci
December 2024
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, PR China; Engineering Research Center of Ministry of Education for Intelligent Rehabilitation Device and Detection Technology, Hebei University of Technology, Tianjin 300401, PR China; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, Hebei University of Technology, Tianjin 300401, PR China; School of Mechanical Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401, PR China. Electronic address:
Transition-metal-loaded carbon-based electrocatalysts are promising alternatives to conventional precious metal electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in high-performance zinc-air batteries. However, efficiently doping transition-metal single atoms onto carbon-based frameworks is a significant challenge. Herein, an improved template-sacrificing method combining a two-step carbonization process is proposed to fabricate Cu/Co diatomic sites coanchored on a three-dimensional nitrogen-doped carbon-based framework.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
Lithium-sulfur batteries (LSBs) exhibit high theoretical specific capacities, abundant resource reserves, and low costs, making them promising candidates for next-generation lithium-ion batteries (LIBs). However, significant challenges, such as the shuttle effect and volume expansion, hinder their practical applications. To address these issues, this study introduces a unique intermediate layer comprising N-doped carbon nanofiber/TiO/diatomite (NCNF/TiO/DE) from the perspective of membrane modification.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
Porous nitrogen-doped graphene (PNG) materials with high conductivity, high surface area, and chemical stability have displayed superior performance in electrochemical capacitors. However, previously reported methods for fabricating PNG render the processes expensive, hard to control, limited in production, and unsafe as well, thus largely restricting their practical applications. Herein, we present a facile two-step calcination method to prepare PNG using petroleum asphalt as the carbon source to provide the original three-dimensional porous structure directly and using environmentally friendly and high nitrogen content urea as the nitrogen source without adding any etching agent.
View Article and Find Full Text PDFNanotechnology
November 2024
School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China.
Molybdenum dioxide (MoO) is regarded as a potential anode for lithium-ion batteries due to its highly theoretical specific capacity. However, its further application in lithium-ion battery is largely limited by insufficient practical discharge capacity and cyclic performance. Here, MoOnanoparticles are in-situ grown on three-dimensional nitrogen doped carbon nanotubes (NCNTs) on nickel foam substrate homogeneously using a simple electro-deposition method.
View Article and Find Full Text PDFChem Sci
October 2024
Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations 92 Weijin Road Tianjin 300072 China
The construction of three-dimensional nanocarbon structures with well-defined molecular dynamics is a challenging yet rewarding task in material science and supramolecular chemistry. Herein, we report the synthesis of two highly defective, nitrogen-doped molecular cylinders, namely MC1 and MC2, with a length of 1.4 nm and 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!