Can the world's favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites?

Plant Cell Rep

Metabolic Biology Department, The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.

Published: October 2018

Tomato has a relatively short growth cycle (fruit ready to pick within 65-85 days from planting) and a relatively high yield (the average for globe tomatoes is 3-9 kg fruit per plant rising to as much as 40 kg fruit per plant). Tomatoes also produce large amounts of important primary and secondary metabolites which can serve as intermediates or substrates for producing valuable new compounds. As a model crop, tomato already has a broad range of tools and resources available for biotechnological applications, either increased nutrients for health-promoting biofortified foods or as a production system for high-value compounds. These advantages make tomato an excellent chassis for the production of important metabolites. We summarize recent achievements in metabolic engineering of tomato and suggest new candidate metabolites which could be targets for metabolic engineering. We offer a scheme for how to establish tomato as a chassis for industrial-scale production of high-value metabolites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153642PMC
http://dx.doi.org/10.1007/s00299-018-2283-8DOI Listing

Publication Analysis

Top Keywords

fruit plant
8
metabolic engineering
8
tomato
6
world's favorite
4
fruit
4
favorite fruit
4
fruit tomato
4
tomato provide
4
provide effective
4
effective biosynthetic
4

Similar Publications

The aim of the current investigation is to explore the novel application of pumpkin, papaya, and orange peels as growth substrates for microalgae cultivation, with the overarching goal of advancing a sustainable "Agro to Agro" biorefinery paradigm. The research evaluates the integration of waste management practices into microalgal production, optimizing growth parameters to maximize output. Optimal concentrations of 2.

View Article and Find Full Text PDF

Plant Coumarin Metabolism-Microbe Interactions: An Effective Strategy for Reducing Imidacloprid Residues and Enhancing the Nutritional Quality of Pepper.

J Agric Food Chem

December 2024

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China.

Imidacloprid (IMI) stress positively correlates with the potential of coumarins to alleviate abiotic stress. However, little is known about the pathways and mechanisms by which coumarin reduces the IMI residue by regulating plant secondary metabolism and plant-microbe interactions. This study examined the impact of coumarin on the uptake, translocation, and metabolism of IMI in pepper plants by modulating the signal molecule levels and microbial communities in the rhizosphere and phyllosphere.

View Article and Find Full Text PDF

Chemoprevention of natural product against oral cancer: A comprehensive review.

Malays J Pathol

December 2024

Universiti Sains Malaysia, School of Dental Sciences, Health Campus, Kubang Kerian, Kelantan, Malaysia.

Introduction: Oral cancer is considered the sixth most common form of cancer worldwide. It causes significant morbidity and mortality, especially in low socioeconomic status groups. However, Cancer chemoprevention encompasses the use of specific compounds to suppress the growth of tumours or inhibit carcinogenesis.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Prolonged utilization of chemical fertilizers can harm the soil and disturb the equilibrium of nutrients, resulting in a decline in cherry tomato yield. To enhance the growth of cherry tomato plants, it is necessary to add organic chemicals. The research aimed to determine the best elicitor biosaka concentration to apply to evoke the plant growth of cherry tomatoes (<i>Solanum lycopersicum</i> L.

View Article and Find Full Text PDF

Background: Fruits, with their diverse shapes, colors, and flavors, represent a fascinating aspect of plant evolution and have played a significant role in human history and nutrition. Understanding the origins and evolutionary pathways of fruits offers valuable insights into plant diversity, ecological relationships, and the development of agricultural systems. Arabidopsis thaliana (Brassicaceae, core eudicot) and Eschscholzia californica (California poppy, Papaveraceae, sister group to core eudicots) both develop dry dehiscent fruits, with two valves separating explosively from the replum-like region upon maturation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!