Electron paramagnetic resonance (EPR) based nanometer distance measurements at ambient temperatures are of particular interest for structural biology applications. The nitroxide spin labels commonly used in EPR reveal relatively short transverse relaxation under these conditions, which limits their use for detecting static dipolar interactions. At the same time, the longitudinal relaxation of nitroxide spin labels is still long enough to allow using them as 'pumped' species in the relaxation induced dipolar modulation enhancement (RIDME) experiment where the detection is carried out on the slower relaxing triarylmethyl (TAM) spin labels. In the present study, we report the first demonstration of room-temperature RIDME distance measurements in nucleic acids using TAM as the slow-relaxing detected species and traditional nitroxide as the fast-relaxing partner spin. Two types of immobilizers, glassy trehalose and the modified silica gel Nucleosil, were used for immobilization of the spin-labeled biomolecules. The room-temperature RIDME-based distance distributions are in good agreement with those measured at 80 K by other techniques. Room-temperature RIDME on the spin pairs trityl/nitroxide may become a useful method for the structural characterization of biomacromolecules and biomolecular complexes at near physiological temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp01093e | DOI Listing |
J Org Chem
January 2025
Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany.
Spin labels based on Gd complexes are important tools for the elucidation of the structure, dynamics and interaction of biomolecules by electron paramagnetic resonance (EPR) spectroscopy. Their EPR spectroscopic properties line width and relaxation times influence their performance in a particular application. To be able to apply a complex well-suited for a specific application, a set of Gd complexes with different EPR spectroscopic properties ready-made for spin labeling will be highly useful.
View Article and Find Full Text PDFNMR Biomed
March 2025
Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.
Hemodynamic measurements such as cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) can provide useful information for the diagnosis and characterization of brain tumors. Previous work showed that arterial spin labeling (ASL) in combination with vasoactive stimulation enabled simultaneous non-invasive evaluation of both parameters, however this approach had not been previously tested in tumors. The aim of this work was to investigate the application of this technique, using a pseudo-continuous ASL (PCASL) sequence combined with breath-holding at 3 T, to measure CBF and CVR in high-grade gliomas and metastatic lesions, and to explore differences across tumoral-peritumoral regions and tumor types.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir Prelog Weg 2, 8093 Zurich, Switzerland.
Relaxation-induced dipolar modulation enhancement (RIDME) is a pulse EPR experiment originally designed to determine distances between spin labels. However, RIDME has several features that make it an efficient tool in a number of "nonconventional" applications, away from the original purpose of this pulse experiment. RIDME appears to be an interesting experiment to probe longitudinal electron spin dynamics, e.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.
Magnetic susceptibility source separation (χ-separation), an advanced quantitative susceptibility mapping (QSM) method, enables the separate estimation of paramagnetic and diamagnetic susceptibility source distributions in the brain. Similar to QSM, it requires solving the ill-conditioned problem of dipole inversion, suffering from so-called streaking artifacts. Additionally, the method utilizes reversible transverse relaxation ( ) to complement frequency shift information for estimating susceptibility source concentrations, requiring time-consuming data acquisition for (e.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
December 2024
Department of Neurology, Wuhan Brain Hospital, General Hospital of Yangtze River Shipping, Wuhan, Hubei, China.
Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI) method. ASL techniques can quantitatively measure cerebral perfusion by fitting a kinetic model to the difference between labelled images (tag images) and ones which are acquired without labelling (control images). ASL functional MRI (fMRI) provides quantitative perfusion maps by using arterial water as an endogenous tracer instead of depending on vascular blood oxygenation level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!