Increasing genomic instability during cancer therapy in a patient with Li-Fraumeni syndrome.

Clin Transl Radiat Oncol

Department of Radiation Oncology, Saarland University, D-66421 Homburg/Saar, Germany.

Published: December 2017

Background: Li-Fraumeni syndrome (LFS) is a cancer predisposition disorder characterized by germline mutations of the p53 tumor-suppressor gene. In response to DNA damage, p53 stimulates protective cellular processes including cell-cycle arrest and apoptosis to prevent aberrant cell proliferation. Current cancer therapies involve agents that damage DNA, which also affect non-cancerous hematopoietic stem/progenitor cells. Here, we report on a child with LFS who developed genomic instability during craniospinal irradiation for metastatic choroid plexus carcinoma (CPC).

Case Presentation: This previously healthy 4-year-old boy presented with parieto-temporal brain tumor, diagnosed as CPC grade-3. Screening for cancer-predisposing syndrome revealed heterozygous p53 germline mutation, leading to LFS diagnosis. After tumour resection and systemic chemotherapy, entire craniospinal axis was irradiated due to leptomeningeal seeding, resulting in disease stabilization for nearly 12 months. Blood lymphocytes of LFS patient (p53-deficient) and age-matched tumor-children (p53-proficient) were collected before, during and after craniospinal irradiation and compared with asymptomatic carriers for identical p53 mutation, not exposed to DNA-damaging treatment. In p53-deficient lymphocytes of LFS patient radiation-induced DNA damage failed to induce cell-cycle arrest or apoptosis. Although DNA repair capacity was not impaired, p53-deficient blood lymphocytes of LFS patient showed significant accumulation of 53BP1-foci during and even several months after irradiation, reflecting persistent DNA damage. Electron microscopy revealed DNA abnormalities ranging from simple unrepaired lesions to chromosomal abnormalities. Metaphase spreads of p53-deficient lymphocytes explored by mFISH revealed high amounts of complex chromosomal aberrations after craniospinal irradiation.

Conclusions: Tumor suppressor p53 plays a central role in maintaining genomic stability by promoting cell-cycle checkpoints and apoptosis. Here, we demonstrate that a patient with LFS receiving craniospinal irradiation including large volumes of bone marrow developed progressive genomic instability of the hematopoietic system. During DNA-damaging radiotherapy, genome-stabilizing mechanisms in proliferating stem/progenitor cells are perturbed by p53 deficiency, increasing the risk of cancer initiation and progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862648PMC
http://dx.doi.org/10.1016/j.ctro.2017.10.004DOI Listing

Publication Analysis

Top Keywords

genomic instability
12
dna damage
12
craniospinal irradiation
12
lymphocytes lfs
12
lfs patient
12
li-fraumeni syndrome
8
cell-cycle arrest
8
arrest apoptosis
8
stem/progenitor cells
8
blood lymphocytes
8

Similar Publications

Introduction: Advanced penile squamous cell carcinoma (pSCC) is a rare and aggressive malignancy with a poor prognosis and an unmet need for biomarkers. We performed a retrospective evaluation of real-world efficacy, safety outcomes, and baseline inflammatory biomarkers in patients with advanced pSCC treated with immune checkpoint inhibitors (ICIs).

Methods: We performed a retrospective review of patients with advanced pSCC who received ICIs from 2012 to 2023 at the Winship Cancer Institute of Emory University in Atlanta, GA.

View Article and Find Full Text PDF

Typically, patients with advanced cholangiocarcinoma have a poor prognosis because of the limited effective chemotherapy options available. Studies on genotype-directed therapies for cholangiocarcinoma are increasing. However, limited clinical data are currently available for evaluating the efficacy of molecular-targeted therapies.

View Article and Find Full Text PDF

Introduction: Spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1) is an extremely rare skeletal dysplasia belonging to a group of disorders called linkeropathies. It is characterized by skeletal and connective tissue abnormalities. Biallelic variants in genes encoding enzymes that synthesize the tetrasaccharide linker region of glycosaminoglycans lead to linkeropathies, which exhibit clinical and phenotypic features that overlap with each other.

View Article and Find Full Text PDF

LncRNA MANCR is downregulated in non-small cell lung cancer and predicts poor survival.

Discov Oncol

January 2025

Spinal Surgery Department, the Fourth People's Hospital of Jinan, No.50 Normal Road, Tianqiao District, Jinan, 250031, Shandong, China.

Background: It is known that genomic instability contributes to cancer development. Mitotically associated long non-coding RNA (MANCR) has been reported to promote genomic stability, suggesting its involvement in cancers. Therefore, this study was conducted to investigate the role of MANCR in non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

Emergence of fungal hybrids - potential threat to humans.

Microb Pathog

January 2025

Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, INDIA. Electronic address:

Fungal hybrids arise through the interbreeding of distinct species. This hybridization process fosters increased genetic diversity and the emergence of new traits. Mechanisms driving hybridization include the loss of heterozygosity, copy number variations, and horizontal gene transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!