Machine learning applications for personalized medicine are highly dependent on access to sufficient data. For personalized radiation oncology, datasets representing the variation in the entire cancer patient population need to be acquired and used to learn prediction models. Ethical and legal boundaries to ensure data privacy hamper collaboration between research institutes. We hypothesize that data sharing is possible without identifiable patient data leaving the radiation clinics and that building machine learning applications on distributed datasets is feasible. We developed and implemented an IT infrastructure in five radiation clinics across three countries (Belgium, Germany, and The Netherlands). We present here a proof-of-principle for future 'big data' infrastructures and distributed learning studies. Lung cancer patient data was collected in all five locations and stored in local databases. Exemplary support vector machine (SVM) models were learned using the Alternating Direction Method of Multipliers (ADMM) from the distributed databases to predict post-radiotherapy dyspnea grade [Formula: see text]. The discriminative performance was assessed by the area under the curve (AUC) in a five-fold cross-validation (learning on four sites and validating on the fifth). The performance of the distributed learning algorithm was compared to centralized learning where datasets of all institutes are jointly analyzed. The euroCAT infrastructure has been successfully implemented in five radiation clinics across three countries. SVM models can be learned on data distributed over all five clinics. Furthermore, the infrastructure provides a general framework to execute learning algorithms on distributed data. The ongoing expansion of the euroCAT network will facilitate machine learning in radiation oncology. The resulting access to larger datasets with sufficient variation will pave the way for generalizable prediction models and personalized medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833935PMC
http://dx.doi.org/10.1016/j.ctro.2016.12.004DOI Listing

Publication Analysis

Top Keywords

distributed learning
12
machine learning
12
radiation clinics
12
learning
10
learning applications
8
personalized medicine
8
radiation oncology
8
cancer patient
8
prediction models
8
patient data
8

Similar Publications

Motivation: Missing values are prevalent in high-throughput measurements due to various experimental or analytical reasons. Imputation, the process of replacing missing values in a dataset with estimated values, plays an important role in multivariate and machine learning analyses. The three missingness patterns, including missing completely at random, missing at random, and missing not at random, describe unique dependencies between the missing and observed data.

View Article and Find Full Text PDF

Evolutionary sparse learning (ESL) uses a supervised machine learning approach, Least Absolute Shrinkage and Selection Operator (LASSO), to build models explaining the relationship between a hypothesis and the variation across genomic features (e.g., sites) in sequence alignments.

View Article and Find Full Text PDF

Anesthetics are crucial in surgical procedures and therapeutic interventions, but they come with side effects and varying levels of effectiveness, calling for novel anesthetic agents that offer more precise and controllable effects. Targeting Gamma-aminobutyric acid (GABA) receptors, the primary inhibitory receptors in the central nervous system, could enhance their inhibitory action, potentially reducing side effects while improving the potency of anesthetics. In this study, we introduce a proteomic learning of GABA receptor-mediated anesthesia based on 24 GABA receptor subtypes by considering over 4000 proteins in protein-protein interaction (PPI) networks and over 1.

View Article and Find Full Text PDF

Can Artificial Intelligence Create an Accurate Colonoscopy Bowel Preparation Prompt?

Gastro Hep Adv

October 2024

Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, Mount Sinai South Nassau, One Healthy Way, Oceanside, New York.

Background And Aims: Colorectal cancer is the third most common cancer in the United States, with colonoscopy being the preferred screening method. Up to 25% of colonoscopies are associated with poor preparation which leads to prolonged procedure time, repeat colonoscopies, and decreased adenoma detection. Artificial intelligence (AI) is being increasingly used in medicine, assessing medical school exam questions, and writing medical reports.

View Article and Find Full Text PDF

Emotion recognition plays a crucial role in brain-computer interfaces (BCI) which helps to identify and classify human emotions as positive, negative, and neutral. Emotion analysis in BCI maintains a substantial perspective in distinct fields such as healthcare, education, gaming, and human-computer interaction. In healthcare, emotion analysis based on electroencephalography (EEG) signals is deployed to provide personalized support for patients with autism or mood disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!