Evaluation of 25% Poloxamer As a Slow Release Carrier for Morphine in a Rat Model.

Front Vet Sci

Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, United States.

Published: March 2018

The objectives of this study were to evaluate poloxamer as a slow release carrier for morphine (M) and potential tissue irritation after subcutaneous poloxamer-morphine (PM) injection in a rat model. Based on the result of a previous work, 25% poloxamer, with and without morphine, and saline were administered in 14 rats' flanks. Blood for morphine concentrations was automatically sampled at multiple preprogrammed time points using the Culex™ unit for 48 h. Skin tissues from the injection sites were harvested and evaluated for histopathological changes. Following M or PM administration, it was determined that the half-life () was significantly longer in the PM (5.5 ± 7.2 h) than M (0.7 ± 0.8 h) indicated a slow dissolution of poloxamer with morphine. The was within 15 min and was approximately three times higher with M than with PM, reaching 716.8 (±153.7 ng/ml) of plasma morphine concentrations. There was no significant difference in total area under the curve and clearance of M versus PM. Histology inflammatory scores were similar between M, PM, and poloxamer but were significantly higher than saline control. We concluded that 25% poloxamer was capable of increasing the of morphine, without a significant tissue irritation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854640PMC
http://dx.doi.org/10.3389/fvets.2018.00019DOI Listing

Publication Analysis

Top Keywords

25% poloxamer
12
poloxamer slow
8
slow release
8
release carrier
8
carrier morphine
8
rat model
8
tissue irritation
8
poloxamer morphine
8
morphine concentrations
8
morphine
7

Similar Publications

Thermoresponsive dual-network chitosan-based hydrogels with demineralized bone matrix for controlled release of rhBMP9 in the treatment of femoral head osteonecrosis.

Carbohydr Polym

March 2025

Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China. Electronic address:

In an effort to mitigate or reverse the pathological progression of early-stage osteonecrosis of the femoral head (ONFH), this study employed a promising strategy that involves the sustained delivery of osteogenic factors to augment core decompression, facilitated by the use of composite hydrogels. Specifically, a hydrogel was synthesized by blending chitosan, Pluronic F-127, and tripolyphosphate, utilizing both ionic bonding and copolymer micelle cross-linking techniques. This hydrogel demonstrated exceptional biocompatibility, temperature responsiveness, pH-dependent biodegradation, and controlled release properties.

View Article and Find Full Text PDF

Cubosomes as Delivery System to Repositioning Nitrofurantoin in Breast Cancer Management.

Drug Des Devel Ther

December 2024

Department of Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt.

Purpose: Nitrofurantoin (NITRO), a long-standing antibiotic to treat urinary tract infections, is activated by Nitro reductases. This activation mechanism has led to its exploration for repositioning applications in controlling and treating breast cancer, which express a Nitro reductase gene.

Methods: NITRO Cubosomes were developed using hot homogenization according to 2-full factorial design.

View Article and Find Full Text PDF

Drug nanocrystal engineering is an attractive pharmaceutical approach to enhancing the oral bioavailability of poorly soluble drugs. The mechanism of drug nanocrystal stabilization, however, is unclear. Here we developed andrographolide nanocrystals (AG-NCs) with various nonionic surfactants (Pluronic-F127, TPGS, or Brij-S20).

View Article and Find Full Text PDF

Lacosamide (LCM) selectively increases the slow inactivation of voltage-gated sodium channels (VGSCs) and is a N-methyl d-aspartate acid (NMDA) receptor glycine site antagonist. Therefore, it can be used in dryness-related hyperexcitability of corneal cold receptor nerve terminals. Ocular in-situ gels remain in liquid form until they reach the target site, where they undergo a sol-gel transformation in response to specific stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!