Rubisco Assembly in the Chloroplast.

Front Mol Biosci

Boyce Thompson Institute, Cornell University, Ithaca, NY, United States.

Published: March 2018

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step in the Calvin-Benson cycle, which transforms atmospheric carbon into a biologically useful carbon source. The slow catalytic rate of Rubisco and low substrate specificity necessitate the production of high levels of this enzyme. In order to engineer a more efficient plant Rubisco, we need to better understand its folding and assembly process. Form I Rubisco, found in green algae and vascular plants, is a hexadecamer composed of 8 large subunits (RbcL), encoded by the chloroplast genome and 8 small, nuclear-encoded subunits (RbcS). Unlike its cyanobacterial homolog, which can be reconstituted or in , assisted by bacterial chaperonins (GroEL-GroES) and the RbcX chaperone, biogenesis of functional chloroplast Rubisco requires Cpn60-Cpn20, the chloroplast homologs of GroEL-GroES, and additional auxiliary factors, including Rubisco accumulation factor 1 (Raf1), Rubisco accumulation factor 2 (Raf2) and Bundle sheath defective 2 (Bsd2). The discovery and characterization of these factors paved the way for Rubisco assembly in . In the present review, we discuss the uniqueness of hetero-oligomeric chaperonin complex for RbcL folding, as well as the sequential or concurrent actions of the post-chaperonin chaperones in holoenzyme assembly. The exact stages at which each assembly factor functions are yet to be determined. Expression of Rubisco in provided some insight regarding the potential roles for Raf1 and RbcX in facilitating RbcL oligomerization, for Bsd2 in stabilizing the oligomeric core prior to holoenzyme assembly, and for Raf2 in interacting with both RbcL and RbcS. In the long term, functional characterization of each known factor along with the potential discovery and characterization of additional factors will set the stage for designing more efficient plants, with a greater biomass, for use in biofuels and sustenance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859369PMC
http://dx.doi.org/10.3389/fmolb.2018.00024DOI Listing

Publication Analysis

Top Keywords

rubisco
10
rubisco assembly
8
rubisco accumulation
8
accumulation factor
8
discovery characterization
8
holoenzyme assembly
8
assembly
5
chloroplast
4
assembly chloroplast
4
chloroplast ribulose-15-bisphosphate
4

Similar Publications

C-metabolic flux analysis of respiratory chain disrupted strain ΔndhF1 of Synechocystis sp. PCC 6803.

Appl Biochem Biotechnol

January 2025

Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Cyanobacteria are advantageous hosts for industrial applications toward achieving sustainable society due to their unique and superior properties such as atmospheric CO fixation via photosynthesis. However, cyanobacterial productivities tend to be weak compared to heterotrophic microbes. To enhance them, it is necessary to understand the fundamental metabolic mechanisms unique to cyanobacteria.

View Article and Find Full Text PDF

The C type of dicotyledonous plants exhibit a higher density of reticulate veins than the C type, with a nearly 1:1 ratio of mesophyll cells (MCs) to bundle sheath cells (BSCs). To understand how this C-type cell pattern is formed, we identified two SCARECROW (SCR) genes in C Flaveria bidentis, FbSCR1 and FbSCR2, that fully or partially complement the endodermal cell layer-defective phenotype of Arabidopsis scr mutant. We then created FbSCRs promoter β-glucuronidase reporter (GUS) lines of F.

View Article and Find Full Text PDF

Enhancing crop yields to ensure food security by optimizing photosynthesis.

J Genet Genomics

January 2025

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau. Therefore, it is essential to accelerate advancements in photosynthesis, the fundamental process by which plants convert light energy into chemical energy, to further enhance crop yields. Research focused on improving photosynthesis holds significant promise for increasing sustainable agricultural productivity and addressing challenges related to global food security.

View Article and Find Full Text PDF

Chemical weed control is a significant agricultural concern, and reliance on a limited range of herbicide action modes has increased resistant weed species, many of which use C4 metabolism. As a result, the identification of novel herbicidal agents with low toxicity targeting C4 plants becomes imperative. An assessment was conducted on the impact of 3-cyanobenzoic acid on the growth and photosynthetic processes of maize (), a representative C4 plant, cultivated hydroponically over 14 days.

View Article and Find Full Text PDF

Agriculture accounts for a large proportion of global greenhouse gas (GHG) emissions. It is therefore crucial to identify effective and efficient GHG mitigation potentials in agriculture, but also in related upstream sectors. However, previous studies in this area have rarely undertaken a cross-sectoral assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!